Extraction of N* Properties

-- summary of EBAC meeting--

T. Sato (Osaka U.)

Status and Plan of Jlab Experiments on N* Physics	V. Burkert
Dubna-Mainz-NTU/MAID	
DMT model for piN scattering and pion e.m. production	S.N. Yang
The Dubna-Mainz-Taipei model(DMT) and MAID	L. Tiator
Bonn-Gatchina Bonn-Gatchina partial wave analysis	A. Sarantsev
IHEP(Beijing)-Saclay	
"Quark-model" and "missing resonances" A tail-chasing game?	Q. Zhao
eta and kaon production on the proton: results and prospectives	B. Saghai
Zagreb Poles of PWData and PWAmplitudes in Zagreb model	A. Svarc
IHEP(Beijing)-BES PWA of Baryon Resonances at BES	B. Zou
CLAS Dispersion relations and unitary isobar model in single pion	
electro-production; Low and high Q2	I. Aznauryan
Meson-Baryon model JM for the Nucleon Resonance Studies	3
in Charged Double Pion Electroproduction	V. Mokeev
Julich-Georgia Julich-Georgia	M. Doring
Julich-UGA model for photoproduction	K. Nakayama
EBAC Details of EBAC-DCC model	H. Kamano
Extraction of resonances from EBAC-DCC model	S. Nakamura

Examine model dependence of resonance parameters extracted from data by different approaches

Question: How extracted resonance parameters can be used in testing various hadron structure calculations

Focus :

definition of resonance parameters

methods to extract res. param.

Situation on the analysis of meson production reaction

$\pi N ightarrow \gamma N ightarrow$	πN	ηN	$\pi\pi N$	$K\Lambda, \Sigma$
Dubna-Mainz-NTU	0	0		
MAID	0	0		
Bonn-Gatchina	00	00	00	00
IHEP(Beijin)-Saclay		00		
Zagreb	0	0		
CLAS	0	0	0	
Juelich-Georgia	00	0		0
EBAC	00	00	00	00

Important to study all available inelastic reactions with coupled channel analysis for both strong and em probes.

Brief summary of Reaction models

 $T = V + VG_0T$

explicit analytic form introduced

The fit of the $\gamma p \to K \Lambda$ differential cross section (CLAS 2009)

gamma p → K Lambda Preliminary (EBAC)

New tool for N*,Y* study : completely differrent S/N from $\pi N, \gamma^* N$

The first experiment "seeing" N*(1440) in π N mass spectrum

BESII	$M = 1358 \pm 17$,	$\Gamma = 179 \pm 56$	MeV
PDG08	$M = 1365 \pm 15$,	$\Gamma = 190 \pm 30$	MeV

IHEP(Beijin)-Saclay

 $\pi N \to \eta N, K^- p \to \Sigma^0 \pi^0$ in constituent quark model

Relative signs for the N*NM couplings

$$S_{11}(1535, 1650) \rightarrow p\eta, \Lambda K^+, n\pi^+, p\pi^0, \Sigma^+ K^0$$

EBAC + chiral constituent quark model

$$T_{\gamma N \to \eta N} = (v_{\gamma N \to \eta N}^{NR} + v_{\gamma N \to \eta N}^{R})(1 + G_{\eta N} t_{\eta N \to MB \to \eta N}^{NR}) + v_{\gamma N \to \pi N}^{NR} G_{\pi N} t_{\pi N \to MB \to \eta N}^{NR}$$

Direct channel CQM

How to characterize resonance

Scattering amplitude near resonance energy

$$F_{\beta,\alpha} = \frac{e^{i\phi_{\beta}}\sqrt{\Gamma_{\beta}/2}e^{i\phi_{\alpha}}\sqrt{\Gamma_{\alpha}/2}}{W - M_{pole} + i\Gamma_{pole}/2} + B_{\beta,\alpha}$$

'Breit-Wigner' parametrization

$$F_{\beta,\alpha} = \frac{e^{i\phi_{\beta}(W)}\sqrt{\Gamma_{\beta}(W)/2}e^{i\phi_{\alpha}(W)}\sqrt{\Gamma_{\alpha}(W)/2}}{W - M_{BW} + i\Gamma(W)/2} + B_{\beta,\alpha}(W)$$
$$\Gamma_{BW} = \Gamma(M_{BW})$$

energy dependence

← reaction model or phenomenological parametrization

'BW' parametrization

Good fit for different non-resonant phase (MAID-DMT)

overlapping resonances : need prescription

DMT
$$T = T^B + \sum_i T_i^{Res}$$

Bonn-Gatchina Zagreb
$$T_{ab} = \frac{B_{ab} - \delta_{ab}}{2i} + \sum_{cd} \frac{B_{ab}^{1/2} F_c^{1/2} \eta_c \eta_d F_d^{1/2} B_{bd}^{1/2}}{r - s - c \sum z_c \Phi_c(s)}$$

The real constants r and c are chosen so that $D(s_{pole}) = 0$.

• Pole and shadow pole near threshold (S11 Julich)

$$F_{11} \sim \frac{-ip_1\gamma_1}{W - M + ip_1\gamma_1 + ip_2\gamma_2}$$
 (Kato(65), Fujii-Kato(69))

Pole of T-matrix on the unphysical sheet

Analytic continuation

contour deformation Julich-Georgia, EBAC Bonn-Gatchina, DMT

Pietarinen expansion Zagreb

• Regularization method DMT(Zagreb)

$$\frac{(a_N - x)^2 + b_N^2}{\sqrt[N+1]{|r_N|^2}} = \sqrt[N+1]{\frac{(N!)^2}{|T^{(N)}(x)|^2}}$$

resonance parameters of P11(1440) : Pole

resonance energy and residue of piN elastic amplitude

		Mass		Residue	
		Re	-Im	r	phase
DMT	Ac	1371	95	50	-79
	RM(5)	1371	95	50	-78
Bonn-(Gatchina	a 1375	100		
Zagreb)	1350	85		
Juelich	۱	1387	74	48	-64
		1387	71		
EBAC		1356	76	37	-111
		1364	105	64	-99

Analyze same PWD/PWA using (DMT,EBAC,CMB) models (Zagreb)

 \rightarrow Examine systematic error : different analytic structure of each models

study of electromagnetic form factor from residue at pole

	State	$P_{11}(1440)$	$P_{11}(1710)$
Bonn-Gatchina	Re(pole)	$1375 {\pm} 6$ ($1365 {\pm} 15$)	1690^{+25}_{-10} (1720 ± 50)
Borni Catorinia	-2lm(pole)	$200{\pm}10$ ($190{\pm}30$)	230^{+30}_{-20} ($230{\pm}150$)
	$g(\pi N)$	$0.49 {\pm} 0.03$ /-40 ${\pm} 6^o$	$0.16 \pm 0.06 I \cdot (5^{+20}_{-50})^{o}$
	$g(\eta N)$	- 0.12 ± 0.05 / 20 ± 10^{o}	-0.16 \pm 0.05/-20 \pm 25°
	$g(K\Lambda)$		$0.70 {\pm} 0.20$ /-8 ${\pm} 10^{o}$
	$g(K\Sigma)$		$0.10 \pm 0.05 / (60^{+60}_{-30})^{o}$
	$A^{1/2}(\gamma p)$	-44 ± 10 /-37° $\pm 10^{o}$	$-65 \pm 25 / -65^{o} \pm 20^{o}$

Julich-Georgia

	Pole position [MeV]	$g_{1/2}^{\gamma} \; [{ m MeV}^{1/2}]$	$g_{3/2}^{\gamma} \; [{ m MeV}^{1/2}]$
$P_{33}(1232)$	1217 - 45i	$0.42 - 0.11 \mathrm{i}$	4.95 + 1.53i
$P_{11}(1440)$	1385 - 72i	$-0.07 - 0.26 \mathrm{i}$	
		$-0.92 + 0.08 \mathrm{i}$	

MAID

SP Pole

Good <u>agreement</u> between the electrocouplings obtained from the <u>N π and</u> <u>N $\pi\pi$ channels</u>: Reliable measure of the electrocouplings with N* parameters defined within the framework of BW ansatz

Open question: how to compare these electrocouplings with obtained in cc approaches? EBAC-DCC results showed substantial Im parts.

Resonance information from the pole of S-matrix

Resonance as 'eigenstate' of hamiltonian with outgoing boundary condition

(A. Donnachie(72), R.H. Dalitz R. G. Moorhouse(70), Siegert(39))

$$H\psi_R = (M - i\Gamma/2)\psi_R$$

with out-going boundary condition(non-hermite) $(d\psi_R/dr - iq_R\psi_R)_{r=R} = 0$

s-matrix pole at q=q_R

Pole positionmass and widthResidue at pole $F_{N^*N}(Q^2) = < \tilde{\phi}_R |j_{em}|N > V \rightarrow j_{em}$

Well defined meaning :resonance mass and transition form factor determined from pole -> meeting point with hadron structure studies