Baryons (and Mesons) on the Lattice

Robert Edwards Jefferson Lab

EBAC May 2010

Spectroscopy

Spectroscopy reveals fundamental aspects of hadronic physics

- Essential degrees of freedom?
- Gluonic excitations in mesons exotic states of matter?
- Status
 - Can extract excited hadron energies & identify spins,
 - Pursuing full QCD calculations with realistic quark masses.
- New spectroscopy programs world-wide
 - E.g., BES III, GSI/Panda
 - Crucial complement to 12 GeV program at JLab.
 - Excited nucleon spectroscopy (JLab)
 - JLab GlueX: search for gluonic excitations.

Regularization of QCD on a lattice

Baryon Spectrum

"Missing resonance problem"

- What are collective modes?
- What is the structure of the states?
 - Major focus of (and motivation for) JLab Hall B
 - Not resolved experimentally @ 6GeV

Variational Method

Orthogonality needed for near degenerate states

Light quark baryons in SU(6)

Conventional non-relativistic construction:

6 quark states in SU(6)

$$u_{\uparrow}, u_{\downarrow}, d_{\uparrow}, d_{\downarrow}, s_{\uparrow}, s_{\downarrow}$$

 $SU(6) \subseteq SU(3)_{\text{Flavor}} \otimes SU(2)_{\text{Spin}}$

Baryons

 $\mathbf{6}\otimes\mathbf{6}\otimes\mathbf{6}~=~\mathbf{56}_{S}\oplus\mathbf{70}_{MS}\oplus\mathbf{70}_{MA}\oplus\mathbf{20}_{A}$

Symmetric : (10, 4) +(8, 2) =56 Mixed : (10, 2)+(8, 4)+(8, 2)+(1, 2) =70 Antisymmetric : (8, 2) +(1, 4)=20

Relativistic operator construction: SU(12)

Symmetric: 182 positive parity + 182 negative parity

Orbital angular momentum via derivatives

Derivatives in ladders:

$$\vec{D}_{l=+1}^{(q)} = \frac{i}{2} \left(\vec{D}_x + i \vec{D}_y \right)$$
$$\vec{D}_{l=0}^{(q)} = -\frac{i}{\sqrt{2}} \vec{D}_z$$
$$\vec{D}_{l=-1}^{(q)} = -\frac{i}{2} \left(\vec{D}_x - i \vec{D}_y \right)$$

Couple derivatives onto single-site spinors:

$$\left(D^{[1]}\Psi^{[S]}\right)^{J,M} = \sum_{l,s} \langle 1,l;S,s|J,M\rangle \vec{D}_{L=1,l}^{[1]} \Psi^{S,s}$$

Project onto lattice irreducible representations

$$\mathcal{O}^{[J]}_{\Lambda,\lambda} = \sum_M \mathcal{S}^{J,M}_{\Lambda,\lambda} \mathcal{O}^{J,M}$$

0905.2160 (PRD), 0909.0200 (PRL), 1004.4930

Spin identified Nucleon spectrum

Thomas Jefferson National Accelerator Facility

9

Experimental comparison

Pattern of states very similar

10

Towards resonance determinations

- Augment with multi-particle operators
- Heavy masses: some elastic scattering
 - Finite volume (scattering) techniques (Lüscher)
 - Phase shifts \rightarrow width
- Elastic & inelastic scattering:
 - Overlapping resonances
 - Will need/extend to finite-volume multi-channel
 - E.g., work by Bonn group
 - R. Young (next talk!)

Phenomenology: Nucleon spectrum

Thomas Jefferson National Accelerator Facility

12

Spin identified Δ spectrum

Spectrum slightly higher than nucleon

Nucleon & Delta Spectrum

Nucleon & Delta Spectrum

Isovector Meson Spectrum

Isovector Meson Spectrum

Exotic matter

Exotic matter

Thomas Jefferson National Accelerator Facility

19

Spectrum of finite volume field theory

Thomas Jefferson National Accelerator Facility

Jefferson Lab

Spectrum of finite volume field theory

Finite volume scattering

Reverse engineer

Use known phase shift \rightarrow anticipate spectrum

Lüscher method

- essentially scattering in a periodic cubic box (length L)

- finite volume energy levels **E(δ,L)**

Using the Lüscher method

The interpretation

The interpretation

Thomas Jefferson National Accelerator Facility

Multi-particle states

Thomas Jefferson National Accelerator Facility

26

Phase Shifts: demonstration

Where are the Form Factors??

- Previous efforts
 - Charmonium: excited state E&M transition FF-s (1004.4930)
 - Nucleon: 1st attempt: E&M Roper->N FF-s (0803.3020)
- Spectrum first!
 - Basically have to address "what is a resonance" up front
 - (Simplistic example): FF for a strongly decaying state: linear combination of states

Summary

- Strong effort in excited state spectroscopy
 - New operator & correlator constructions $\rightarrow~$ high lying states
 - Finite volume extraction of resonance parameters promising
 - Significant progress in last year, but still early stages
- Initial results for excited state spectrum:
 - Suggests baryon spectrum at least as dense as quark model
 - Suggests multiple exotic mesons within range of Hall D
- Resonance determination:
 - Start at heavy masses: have some "elastic scattering"
 - Already have smaller masses: move there + larger volumes (m_ π ~230MeV, L= 3 & 4fm)
 - Now: multi-particle operators & annihilation diagrams (gpu-s)
 - Starting physical limit gauge generation
 - Will need multi-channel finite-volume analysis for (in)elastic scattering

• The end

Towards resonance determinations

- Augment with multi-particle operators
 - Needs "annihilation diagrams" provided by *Distillation* Ideally suited for (GPU-s) arxiv:0905.2160
- Resonance determination
 - Scattering in a finite box discrete energy levels
 - Lüscher finite volume techniques
 - Phase shifts \rightarrow Width
- First results (partially from GPU-s)
 - Seems practical

• The end

Determining spin on a cubic lattice?

Spin reduction & (re)identification

Correlator matrix: near orthogonality

Small condition numbers ~ 200

PRL (2007), arXiv:0707.4162 & 0902.2241 (PRD)

Nucleon spectrum in (lattice) group theory

PRD 79(2009), PRD 80 (2009), 0909.0200 (PRL)

Interpretation of Meson Spectrum

Exotic matter?

Distillation: annihilation diagrams

• Two-meson creation op

$$C(t',t) = \left\langle \chi^B(t') \left(\chi^A_1(-\vec{p})\chi^A_2(\vec{p}) \right)^{\dagger}(t) \right\rangle$$

• Correlator

$$C_M^{(2)}(t',t) = \text{Tr}\Big[\Phi^B(t')\,\tau(t',t)\,\left\{\Phi_1^A(t)\,\cdot\,\tau(t,t)\,\cdot\,\Phi_2^A(t)\right\}\,\tau(t,t')\Big]$$

Operators and contractions

- New operator technique: Subduction
 PRL 103 (2009)
 - Derivative-based continuum ops -> lattice irreps
 - Operators at rest or in-flight, mesons & baryons
- Large basis of operators -> lots of contractions
 - E.g., nucleon H_g 49 ops up through 2 derivs
 - Order 10000 two-point correlators
- Feed all this to variational method $C_{AB}(t)v_B^{(n)}(t) = \lambda^{(n)}(t)C_{AB}(t_0)v_B^{(n)}(t)$
 - Diagonalization: handles near degeneracies

