
Excited Baryon Program: Theoretical Developments

T.-S. H. Lee
Argonne National Laboratory
and
Excited Baryon Analysis Center (EBAC) at JLab

Objectives:

Perform theoretical analyses of meson production data

 \rightarrow

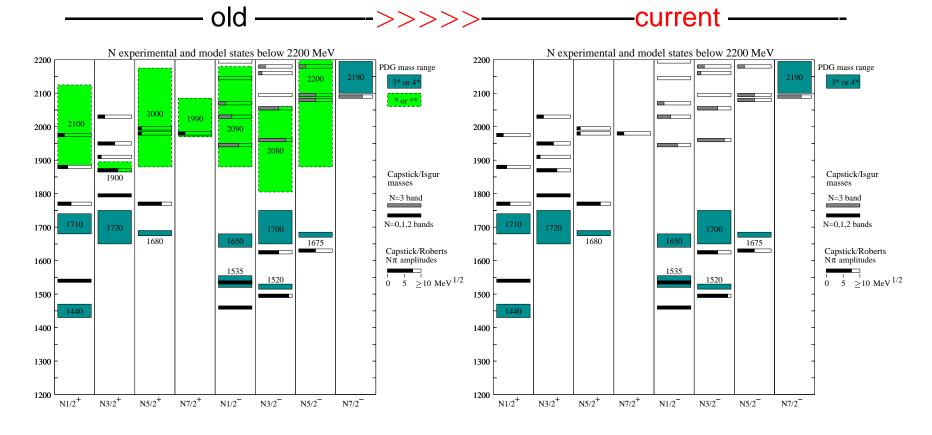
• Extract N^* parameters : Masses, Widths, Form factors

- Interpret *N** parameters :
 - Hadron models with effective degrees of freedom
 - Lattice QCD

 \rightarrow

Understand non-perturbative QCD:

- Confinement mechanism
- Chiral dynamics of meson cloud of baryons


• • • • •

Current focus:

• Identify baryon excited states at W > 1.7 GeV

 \rightarrow

Establish symmetry property $(SU(6) \oplus O(3) \text{ or } ?????)$

Recent PDG assessment: 1- and 2-star states are doubtful

• Extract and interpret $N-N^*$ form factors

 \rightarrow

Reveal

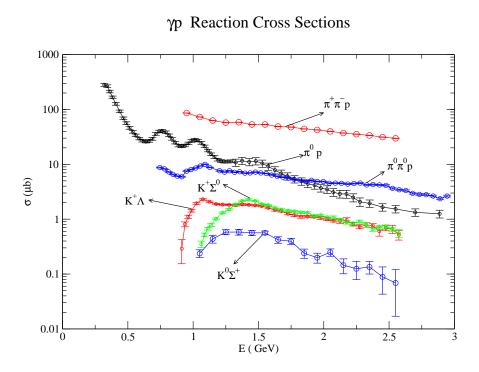
- The quark sub-structure of baryon excited states
- The meson cloud effects

General Considerations

• Baryon excited states are coupled to meson-baryon reaction channels to form resonances (N^*)

 \rightarrow

Reaction amplitude : $T = t^R + t^{nr}$


- t^R : changes of internal structure ($N \to \Delta, N(1440), \cdots$)
- t^{nr} : non-resonant interactions between reaction channels (Meson exchanges \cdots)
- Many reaction channels

$$\gamma N, \pi N, \eta N, \omega N, K\Lambda, K\Sigma, \pi \pi N(\pi \Delta, \rho N, \sigma N)$$

 \rightarrow

A multi-channel and multi-resonance reaction problem

Example: $\gamma N \to KY$

Must include:

- coupled-channel effects:
 - $-\gamma p \to \pi N \to KY$
 - $-\gamma p \to \pi\pi N \to KY$
- at least about 10 known N^* resonances

Theoretical Development

Very far from predicting meson-baryon reactions from QCD

 \rightarrow

Current effort:

- ullet Develop reaction models to extract N^* parameters
- ullet Interpret N^* parameters using available hadron structure calculations

Note

Analysis based on dispersion relations is difficult:

- can not handle multi-particle channels $(\pi\pi N)$
- not applicable at high Q^2 region

 \rightarrow

Develop alternative reaction models

K-matrix models (On-shell approximation, PWA)

$$S = \frac{1+iK}{1-iK}$$

$$K \sim V(tree - diagram)$$

GWU-VPI (SAID), Mainz (MAID), JLab-Yerevan , CMU (PWA)
 Giessen, GWU, KVI , Bonn-Gatchina, JLab-MSU (JM06),
 Valencia, Hiroshima-Onomichi, · · ·

Dynamical Models

$$S = 1 + 2iT$$

$$T = V + \int VGT$$

 \rightarrow

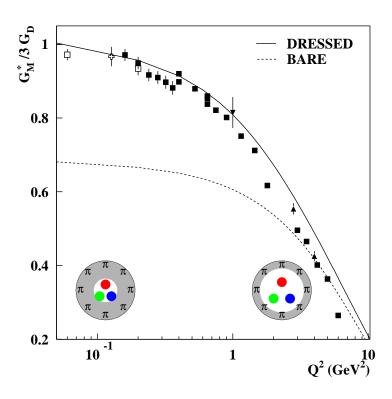
Account for reaction mechanisms in the short-range (off-shell) region where we want to map out N^{*} structure

Sato-Lee, Gross-Surya, Dubna-Mainz-Taipei, Fuda-Alharbi,
 Ohio-Utrecht, Saclay-Pitt-ANL, Pascalutsa-Vanderhaeghen, Julich, ··

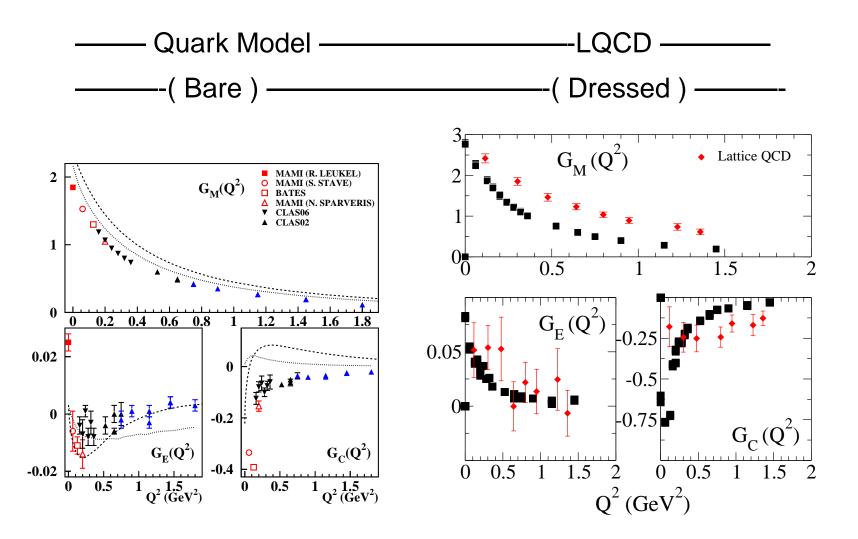
Two approaches are complementary:

K-matrix models solve algebraic equations

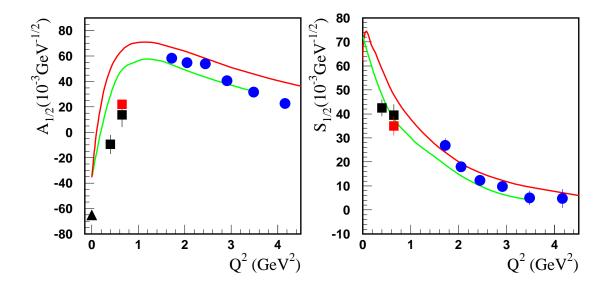
 \rightarrow


very efficient in processing multi-channel data to get first-run results of N^{\ast} parameters

Dynamical models account for short-range (off-shell) mechanisms
 →

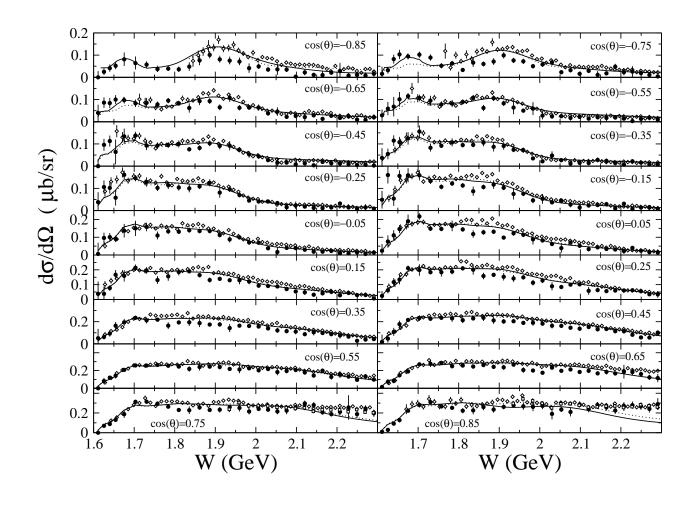

related to hadron structure calculations for interpreting N^* parameters

Selected Recent Results


- 1. $\gamma N o \Delta(1232)$ form factors
 - ullet Q^2 -evolution of meson cloud is discovered

Hadron structure calculations are tested

2. $N-N^*(1440)$ form factors agree with Quark Model



Red curves: S. Capstick and B.D. Keister

Green curves: I. Aznauryan

3. New states at $W>1.7\ {\rm GeV}$ are suggested

Example: Coupled-channel fit to $\gamma p \to K^+ \Lambda$ data of JLab (B. Julia-Diaz et al. 2006)

New states	Mass	Width
S_{11}	1.833	0.288
P_{13}	1.974	0.108
D_{13}	1.912	0.316

Several new states have also been suggested in the K-matrix analyses by Giessen group, GWU group, Bonn-Gatchina group, CLAS collaboration (JM06)

Note

- Need to be further confirmed by analyses including polarization data and more complete coupled-channel analyses.
- Need to be verified by dynamical model analyses

Necessary next step:

Strengthen the collaborations between empirical analyses (PWA, K-matrix analyses) and theoretical efforts (dynamical models, hadron structure calculations)

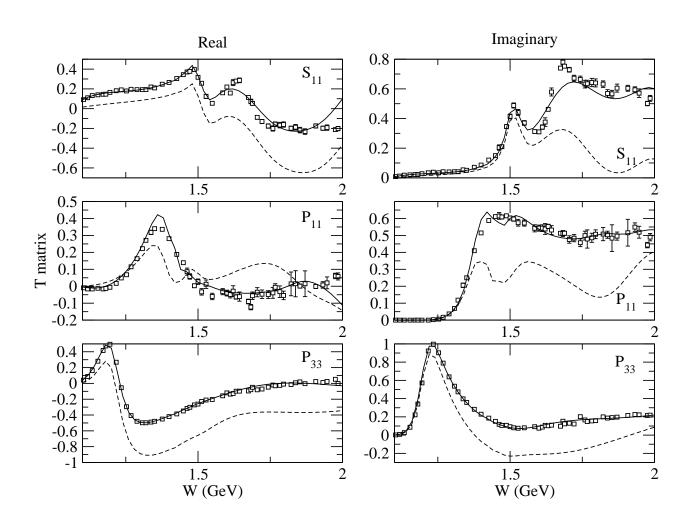
 \rightarrow

Establish Excited Baryon Analysis Center (EBAC) at the Theory Center of Jefferson Laboratory

Excited Baryon Analysis Center (EBAC) Theory Center, Jefferson Laboratory

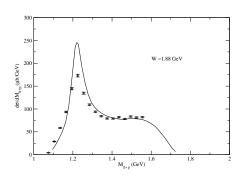
Established: January, 2006

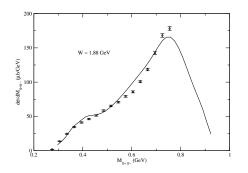
Goal: Reach a DOE milestone by 2009

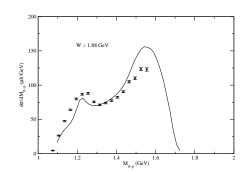

"Complete the combined analysis of available single pion, eta and kaon photo-production data for nucleon resonances and incorporate analysis of two-pion final states into the coupled channel analysis of resonances."

1. On-going theoretical projects:

- Perform Dynamical Coupled-Channel Analysis
 (B. Julia-Diaz, T.-S. H. Lee, A. Matsuyama, M. Paris, T. Sato,
 K. Tsushima)
 - $-\pi N$, ηN , $\pi\pi N$ production
 - $-\omega N$, $K\Lambda$ production
- Develop collaborations with other theoretical efforts
 - Coupled-channel analysis by the Julich group
 (J. Haidenbauer, C. Hanhart, S. Krewald, Ulf-G. Meißner,
 A. Sibirtsev, K. Nakayama, H. Haberzettl)
 - EBAC-Saclay Coupled-channel analysis of η , K photoproduction (J.-C. David, J. Durand, Jun He, B. Julia-Diaz, T.-S. H. Lee, B. Saghai, T. Sato)

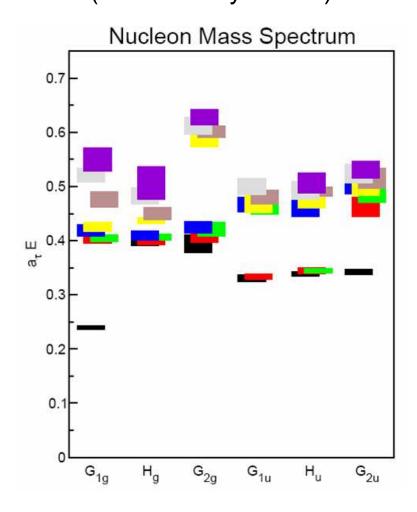

First results from **EBAC**


• Fits of πN amplitudes



(dashed curves: N^* contributions)

• Start to analyze $\gamma p \to \pi^+\pi^- p$ data of JLab

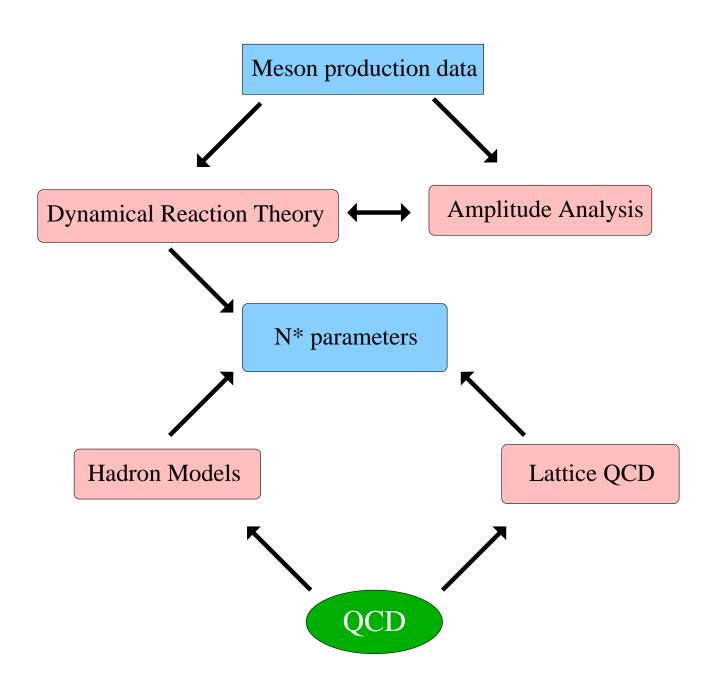


Plans:

- 2007 2008 : Analysis of π , η , $\pi\pi$ production data
- 2008 -2009 : full coupled analysis including ω, K production data

- 2. Provide theoretical input to the data analyses by experimental groups
 - Include the coupled-channel effects in the combined analyses of π , η , $\pi\pi$ production data by CLAS collaboration
 - Collaborations with other experimental groups will be developed
- 3. Projects being developed:
 - Development of reaction models at high Q^2 region, accessible to JLab's 12 GeV upgrade
 - Investigation of the connections with Lattice QCD calculations

Recent LQCD Calculations (Provided by LHPC)



Question:

How to compared with the extracted N^* resonance energies ?

Dynamical Coupled-Channel Analysis at EBAC

Theory Center, JLAB

