Excited Baryon Program: Theoretical Developments T.-S. H. Lee Argonne National Laboratory and Excited Baryon Analysis Center (EBAC) at JLab #### Objectives: Perform theoretical analyses of meson production data \rightarrow • Extract N^* parameters : Masses, Widths, Form factors - Interpret *N** parameters : - Hadron models with effective degrees of freedom - Lattice QCD \rightarrow # Understand non-perturbative QCD: - Confinement mechanism - Chiral dynamics of meson cloud of baryons • • • • • #### Current focus: • Identify baryon excited states at W > 1.7 GeV \rightarrow Establish symmetry property $(SU(6) \oplus O(3) \text{ or } ?????)$ Recent PDG assessment: 1- and 2-star states are doubtful • Extract and interpret $N-N^*$ form factors \rightarrow ## Reveal - The quark sub-structure of baryon excited states - The meson cloud effects #### **General Considerations** • Baryon excited states are coupled to meson-baryon reaction channels to form resonances (N^*) \rightarrow Reaction amplitude : $T = t^R + t^{nr}$ - t^R : changes of internal structure ($N \to \Delta, N(1440), \cdots$) - t^{nr} : non-resonant interactions between reaction channels (Meson exchanges \cdots) - Many reaction channels $$\gamma N, \pi N, \eta N, \omega N, K\Lambda, K\Sigma, \pi \pi N(\pi \Delta, \rho N, \sigma N)$$ \rightarrow A multi-channel and multi-resonance reaction problem # Example: $\gamma N \to KY$ # Must include: - coupled-channel effects: - $-\gamma p \to \pi N \to KY$ - $-\gamma p \to \pi\pi N \to KY$ - at least about 10 known N^* resonances # Theoretical Development Very far from predicting meson-baryon reactions from QCD \rightarrow #### Current effort: - ullet Develop reaction models to extract N^* parameters - ullet Interpret N^* parameters using available hadron structure calculations #### Note Analysis based on dispersion relations is difficult: - can not handle multi-particle channels $(\pi\pi N)$ - not applicable at high Q^2 region \rightarrow Develop alternative reaction models K-matrix models (On-shell approximation, PWA) $$S = \frac{1+iK}{1-iK}$$ $$K \sim V(tree - diagram)$$ GWU-VPI (SAID), Mainz (MAID), JLab-Yerevan , CMU (PWA) Giessen, GWU, KVI , Bonn-Gatchina, JLab-MSU (JM06), Valencia, Hiroshima-Onomichi, · · · # Dynamical Models $$S = 1 + 2iT$$ $$T = V + \int VGT$$ \rightarrow Account for reaction mechanisms in the short-range (off-shell) region where we want to map out N^{*} structure Sato-Lee, Gross-Surya, Dubna-Mainz-Taipei, Fuda-Alharbi, Ohio-Utrecht, Saclay-Pitt-ANL, Pascalutsa-Vanderhaeghen, Julich, ·· ### Two approaches are complementary: K-matrix models solve algebraic equations \rightarrow very efficient in processing multi-channel data to get first-run results of N^{\ast} parameters Dynamical models account for short-range (off-shell) mechanisms → related to hadron structure calculations for interpreting N^* parameters #### Selected Recent Results - 1. $\gamma N o \Delta(1232)$ form factors - ullet Q^2 -evolution of meson cloud is discovered Hadron structure calculations are tested # 2. $N-N^*(1440)$ form factors agree with Quark Model Red curves: S. Capstick and B.D. Keister Green curves: I. Aznauryan # 3. New states at $W>1.7\ {\rm GeV}$ are suggested Example: Coupled-channel fit to $\gamma p \to K^+ \Lambda$ data of JLab (B. Julia-Diaz et al. 2006) | New states | Mass | Width | |------------|-------|-------| | S_{11} | 1.833 | 0.288 | | P_{13} | 1.974 | 0.108 | | D_{13} | 1.912 | 0.316 | Several new states have also been suggested in the K-matrix analyses by Giessen group, GWU group, Bonn-Gatchina group, CLAS collaboration (JM06) #### Note - Need to be further confirmed by analyses including polarization data and more complete coupled-channel analyses. - Need to be verified by dynamical model analyses ### Necessary next step: Strengthen the collaborations between empirical analyses (PWA, K-matrix analyses) and theoretical efforts (dynamical models, hadron structure calculations) \rightarrow Establish Excited Baryon Analysis Center (EBAC) at the Theory Center of Jefferson Laboratory # Excited Baryon Analysis Center (EBAC) Theory Center, Jefferson Laboratory Established: January, 2006 Goal: Reach a DOE milestone by 2009 "Complete the combined analysis of available single pion, eta and kaon photo-production data for nucleon resonances and incorporate analysis of two-pion final states into the coupled channel analysis of resonances." # 1. On-going theoretical projects: - Perform Dynamical Coupled-Channel Analysis (B. Julia-Diaz, T.-S. H. Lee, A. Matsuyama, M. Paris, T. Sato, K. Tsushima) - $-\pi N$, ηN , $\pi\pi N$ production - $-\omega N$, $K\Lambda$ production - Develop collaborations with other theoretical efforts - Coupled-channel analysis by the Julich group (J. Haidenbauer, C. Hanhart, S. Krewald, Ulf-G. Meißner, A. Sibirtsev, K. Nakayama, H. Haberzettl) - EBAC-Saclay Coupled-channel analysis of η , K photoproduction (J.-C. David, J. Durand, Jun He, B. Julia-Diaz, T.-S. H. Lee, B. Saghai, T. Sato) #### First results from **EBAC** • Fits of πN amplitudes (dashed curves: N^* contributions) • Start to analyze $\gamma p \to \pi^+\pi^- p$ data of JLab #### Plans: - 2007 2008 : Analysis of π , η , $\pi\pi$ production data - 2008 -2009 : full coupled analysis including ω, K production data - 2. Provide theoretical input to the data analyses by experimental groups - Include the coupled-channel effects in the combined analyses of π , η , $\pi\pi$ production data by CLAS collaboration - Collaborations with other experimental groups will be developed - 3. Projects being developed: - Development of reaction models at high Q^2 region, accessible to JLab's 12 GeV upgrade - Investigation of the connections with Lattice QCD calculations # Recent LQCD Calculations (Provided by LHPC) ## Question: How to compared with the extracted N^* resonance energies ? ## Dynamical Coupled-Channel Analysis at EBAC Theory Center, JLAB