EBAC EXOTICS WORKSHOP

MAY, 2010

MODELS OF EXOTIC MESONS

Monday, June 7, 2010

MODELLING EXOTIC MESONS

- bound state models
- decay models
- mixing, photocouplings

Juge, Kuti, Morningstar, PRL82,4400,1999

Monday, June 7, 2010

diatomic molecule quantum numbers

ex:
$$\Lambda_{\eta}^{Y} = \Sigma_{g}^{+}$$
 is the ground state

Y is PC acting on the glue

 $\eta = u/g$ is reflection in a plane containing the $q\bar{q}$ axis $\Lambda = \Sigma, \Pi, \Delta, \dots$ is the projection of the string angular momentum onto the $q\bar{q}$ axis

Monday, June 7, 2010

 $\begin{array}{cccc} J^{PC} & \text{potentials} & \Delta E \ (\text{MeV}) \\ 1^{+-} & \Pi_u, \ \Sigma_u^- & - \\ 1^{--} & \Pi_g, \ \Sigma_g^+ & 368(6) \\ 2^{--} & \Sigma_g^-, \ \Delta_g & 584(10) \\ 3^{+-} & - & 972(24) \\ 2^{+-} & - & 973(36) \end{array}$

Foster and Michaels, PRD59, 094509 (99)

MODELS

BOUND STATE MODELS

Ingredients

- model quarks -> (constituent quarks, bag modes)
- model glue -> (constituent gluons, bag modes, flux tubes)
- model dynamics

1. BAG MODELS

T. Barnes and F. E. Close, Phys. Lett. B 116, 365 (1982)
T. Barnes, F. E. Close and F. de Viron, Nucl. Phys. B 224, 241 (1983)
M. Chanowitz and S. Sharpe, Nucl. Phys. B 222, 211 (1983)

lowest mode is a 1+ TE gluon

the lightest multiplet is $0^{-+}, 1^{--}, 1^{-+}, 2^{-+}$

with mass of roughly 1.5 GeV

1. BAG MODELS

apply to gluelumps

Karl and Paton, PRD60, 034015 (99)

free gluon spectrum $1^+, 2^-, 1^-, 3^+, 2^+, \dots$

include Coulomb energy

 $1^+ = 1.43 \text{ GeV}$ $2^- = 1.97 \text{ GeV}$ $1^- = 1.98 \text{ GeV}$ $3^+ = 2.44 \text{ GeV}$ $2^+ = 2.64 \text{ GeV}$ At small r, energies are shifted because a colour dipole develops:

$$\delta E(r) = E(0) + \frac{9}{4}\alpha_s^2 \langle \frac{\cos^2\theta}{r^4} \rangle \frac{r^2}{\bar{E}}$$

1. BAG MODELS

HHKR bag model computation

Juge, Kuti, and Morningstar, (98)

2. SUM RULES

1^{-+} mass (GeV)	ref
1.3	J. Govaerts et al., PLB 128, 262 (1983); 136, 445E (1983); NPB 248, 1 (1984).
~1	I. I. Balitsky, D. I. Dyakonov and A. V. Yung, Z. Phys. C 33, 265 (1986)
1.7(1)	J. I. Latorre, P. Pascual and S. Narison, Z. Phys. C 34, 347 (1987)
1.65(5)	K.G. Chetyrkin and S. Narison, PLB 485, 145 (00)
1.81(6)	S. Narison, PLB 675, 319 (09)

3. CONSTITUENT GLUE MODELS

Constituent quarks plus pointlike, massless, spinless, colorless 'glue'.

Neglect the repulsive short range colour octet interaction, $V_{\underline{8}} = +\frac{\alpha_s}{6r}$ Barnes, PhD thesis, Caltech, (77) D. Horn and J. Mandula, PRD 17, 898 (78)

3. CONSTITUENT GLUE MODELS

Swanson and Szczepaniak, PRD59, 014035 (98)

Coulomb gauge QCD, transverse gluons with colour, spin, and dynamically generated mass.

-- level ordering problem

3. CONSTITUENT GLUE MODELS

Szczepaniak and Krupinski, hep-ph/0604098

Giles and Tye, PRL37, 1175 (76). ①

Coupled quarks to a relativistic 2d sheet... the "Quark Confining String Model".

"The presence of vibrational levels gives ... extra states in quantum mechanics. ... that are absent in the charmonium model."

$$V_N = \sigma r \left(1 + \frac{2N\pi}{\sigma r^2}\right)^{1/2}$$

GT

 $V_{NG} = \sigma r \left(1 - \frac{D-2}{12\sigma r^2} + \frac{2N\pi}{\sigma r^2}\right)^{1/2}$ J.F. Arvis, PLB127, 106 (83); Luescher

FIG. 4. The nonrelativistic spectroscopy of the charm string. $\psi(3.10)$ and $\psi(3.68)$ are fitted to obtain M = 1.154GeV and $k = 0.21 \text{ GeV}^2$. The dashed lines are the vibrational levels absent in the charmonium model. Levels with E > 4.5 GeV or l > 2 are not shown.

T. Allen and M.G. Olsson, PLB434, 110 (98)

Monday, June 7, 2010

Isgur and Paton, PRD31, 2910 (85).

strong coupling Hamiltonian lattice gauge theory

$$H = \frac{g^2}{2a} \sum_{\ell} E_{\ell}^a E_{a\ell} + \sum_n m \bar{\psi}_n \psi_n + \frac{1}{a} \sum_{n,\mu} \psi_n^{\dagger} \alpha_{\mu} U_{\mu}(n) \psi_{n+\mu} + \frac{1}{ag^2} \sum_P \operatorname{tr}(N - U_P - U_P^{\dagger})$$

Isgur and Paton, PRD31, 2910 (85).

Isgur and Paton, PRD31, 2910 (85).

Isgur and Paton, PRD31, 2910 (85).

$$H = b_0 R + \left(\frac{4}{\pi a^2} R - \frac{1}{a} - \frac{\pi}{12R}\right) + \sum_{n\lambda} \omega_n \alpha_{n\lambda}^{\dagger} \alpha_{n\lambda}$$

	L	S	J PC
	1	0	1++
= +	1	1	(2 ,1, 0) ⁺ -
	2	0	2
	2	1	(3,2, 1) ⁻⁺
	1	0	1
_ = -	1	1	(2, 1 ,0)-+
	2	0	2++
	2	1	(3, 2 ,1) ⁺ -

Monday, June 7, 2010

Comparison to the lattice

Monday, June 7, 2010

5. SCHWINGER-DYSON FORMALISM

C.J. Burden et al, PRC55, 2649 (97).C.J. Burden & M.A. Pichowsky, Few Body Sys. 32, 119 (02).

separable Ansatz for the scattering kernel:

 $D_{\mu\nu}(p-q) = \delta_{\mu\nu} [G(p^2)G(q^2) + p \cdot qF(p^2)F(q^2)]$

6. LATTICE GAUGE THEORY

JKM, nucl-th/0307116 C. Bernard et al., hep-lat/0301024.

J.J. Dudek et al. PRL103, 262001 (09) J.J. Dudek et al. 1004.4930

isovector, dynamical lattice, $m_u=m_s$, $m_{\pi}=700$ MeV

 $M(1^{-+}) \approx 2.17$ $M(0^{+-}) \approx M(2^{+-}) \approx 2.51$

6. LATTICE GAUGE THEORY

Monday, June 7, 2010

DECAYS

1. IKP FLUX TUBE DECAY MODEL

quark creation operator

Kokoski & Isgur, PRD35, 907 (87)

Isgur, Kokoski, & Paton, PRL54, 869 (85)

$$H = \frac{g^2}{2a} \sum_{\ell} E_{\ell}^a E_{a\ell} + \sum_n m \bar{\psi}_n \psi_n + \frac{1}{a} \sum_{n,\mu} \psi_n^{\dagger} \alpha_{\mu} U_{\mu}(n) \psi_{n+\mu} + \frac{1}{ag^2} \sum_P \operatorname{tr}(N - U_P - U_P^{\dagger})$$

 $H_{int} \sim \psi_n^{\dagger} \alpha \cdot \mu \psi_{n+\mu}$

 $\sim \psi_n^{\dagger} \alpha \cdot \mu \psi_n + a \psi_n^{\dagger} \alpha \cdot \mu \mu \cdot \nabla \psi_n$

2 MM May

 $\psi_n^{\dagger} \alpha \cdot \mu \psi_n \qquad \qquad \psi_n^{\dagger} \alpha \cdot \nabla \psi_n$

1. IKP FLUX TUBE DECAY MODEL

quark creation operator

Kokoski & Isgur, PRD35, 907 (87)

Isgur, Kokoski, & Paton, PRL54, 869 (85)

$$H = \frac{g^2}{2a} \sum_{\ell} E_{\ell}^a E_{a\ell} + \sum_n m \bar{\psi}_n \psi_n + \frac{1}{a} \sum_{n,\mu} \psi_n^{\dagger} \alpha_{\mu} U_{\mu}(n) \psi_{n+\mu} + \frac{1}{ag^2} \sum_P \operatorname{tr}(N - U_P - U_P^{\dagger})$$

 $H_{int} \sim \psi_n^{\dagger} \alpha \cdot \mu \psi_{n+\mu}$

 $\sim \psi_n^{\dagger} \alpha \cdot \mu \psi_n + a \psi_n^{\dagger} \alpha \cdot \mu \, \mu \cdot \nabla \psi_n$

2 MM Man

 $\psi_n^\dagger lpha \cdot \mu \psi_n$

 $\psi_n^{\dagger} \alpha \cdot \nabla \psi_n$

 ${}^{3}P_{0}$

1. IKP FLUX TUBE DECAY MODEL

meson decay

 $<\{0...0\}bd; \{0...0\}bd|O|\{0...0\}bd^{\dagger} \sim <bd; bd|^{3}P_{0}|bd^{\dagger} \sim <\{0...0\}; \{0...0\}|bd^{\dagger} \sim <\{0...0\}; \{0...0\}|bd^{\dagger} \sim <\{0...0\}\}$

 $e^{-fby_{\perp}^2}$

hybrid decay

<{0...0}bd; {0...0}bd | O | {1,0...0}bd > ~ <bd; bd | ³P₀ | bd > . $y_{\perp} e^{-fby_{\perp}^2} < \{0...0\}; \{0...0\} | \{1,0...0\} >$

2. VECTOR DECAY MODEL

Szczepaniak & Swanson, PRD55, 3987 (97) Page, Szczepaniak & Swanson, PRD59, 014035 (99)

map chromofields to phonon degrees of freedom

$$E^a_{\lambda}(n) = \frac{\kappa}{a^3} \left(y^a_{\lambda}(n+1) - y^a_{\lambda}(n) \right)$$

$$B^a_{\lambda}(n) = \frac{-i}{\kappa a} \frac{\partial}{\partial y^a_{\bar{\lambda}}(n)} \qquad \qquad \kappa = a\sqrt{b_0}$$

$$B^{a}_{\lambda}(n) = \frac{-i}{\kappa} \sqrt{\frac{b_{0}}{r}} \sum_{m} \sin \frac{m\pi}{N+1} n \sqrt{\omega_{m}} \left(\alpha^{a}_{m\lambda} \mathrm{e}^{-i\omega_{m}t} - \alpha^{a\dagger}_{m\lambda} \mathrm{e}^{i\omega_{m}t} \right)$$

2. VECTOR DECAY MODEL

use the same mapping to obtain $\ \psi \alpha \cdot A \psi$

 $H_{int} = \frac{iga^2}{\sqrt{\pi}} \sum_{m,\lambda} \int_0^1 d\xi \cos(\pi\xi) T^a_{ij} h^{\dagger}_i(\xi \mathbf{r}_{Q\bar{Q}}) \sigma \cdot \hat{\mathbf{e}}_{\lambda}(\hat{\mathbf{r}}_{Q\bar{Q}}) \left(\alpha^a_{m\lambda} - \alpha^{a\dagger}_{m\lambda}\right) \chi_j(\xi \mathbf{r}_{Q\bar{Q}})$

$$\langle H|H_{int}|AB\rangle = i\frac{ga^2}{\sqrt{\pi}}\frac{2}{3}\int_0^1 d\xi \int d\mathbf{r} \cos(\pi\xi) \sqrt{\frac{2L_H+1}{4\pi}} e^{\frac{i\mathbf{p}\cdot\mathbf{r}}{2}} \varphi_H(r)\varphi_A^*(\xi\mathbf{r})\varphi_B^*((1-\xi)\mathbf{r}) \cdot \left[\mathcal{D}_{M_L\Lambda}^{L_H*}(\phi,\theta,-\phi)\chi_{\Lambda,\lambda}^{PC}\hat{\mathbf{e}}_{\lambda}(\hat{\mathbf{r}})\cdot\langle\sigma\rangle\right]$$

both models obtain the "S+P" decay selection rule: hybrids cannot decay to two S-wave states with identical spatial wavefunctions.

3. LATTICE DECAY

C. McNeile, C. Michael, and P. Pennanen [UKQCD], PRD 65, 094505 (02).

$$1^{-+}(b\bar{b}) \to \eta_b \eta(s\bar{s}) \sim 1 \text{ MeV}$$

 $1^{-+}(b\bar{b}) \to \chi_b \sigma(s\bar{s}) \sim 60 \text{ MeV}$

			alt	10.9 GeV hybrid	standard	IKP	reduced
2-+	B^*B	Р	.1	0	.5	3	44
1^{-+}	B^*B	Р	.1	0	.5	3	44
0 ⁻⁺	B^*B	Р	.5	0	2	13	177
1	B^*B	Р	.2	0	1.2	7	88
2+-	B^*B	D	.08	.05	.25	1	22
1+-	B^*B	S	.02	.1	.2	5	13
	B^*B	D	.02	.02	.15	.6	12
1 ⁺⁺ B [*] B [*]	B^*B	S	.01	.05	.25	2	7
	B^*B	D	.1	.05	.5	1	24

4. HYBRID PHOTOCOUPLING

JLab, PRD79, 094504 (09)

4. HYBRID PHOTOCOUPLING

JLab, PRD79, 094504 (09)

5. HYBRID-NONEXOTIC MIXING

T. Burch and D. Toussaint [MILC], PRD68, 094504 (03)

Compute vector meson - vector hybrid meson mixing in NRQCD on the lattice.

This mixing occurs via $\mathcal{O} = g \frac{\sigma \cdot B}{2M}$

Obtain $\Upsilon(H) \approx 0.4\%$ $\eta_b(H) \approx 1\%$ $J/\psi(H) \approx 2.3\%$ $\eta_c(H) \approx 6\%$

CONCLUSIONS

- modelling hybrids requires much guesswork. The lattice helps.
- decay selection rule will help identify states (assuming open flavour decays)
- newer lattice results (mass, photocoupling, mixing) support older guesses

+ ÆRIC MEC HEHT GEWYRCAN

