Physics at GlueX

Jo Dudek JLab Theory Center & Old Dominion University

GlueX

12 GeV electron beam → 9 GeV linearly polarised photon beam (or higher *E* with lower polarisation)

hybrids

one simple way to get exotic quantum numbers is by adding a gluonic degree-of-freedom

we know that strongly coupled glue can behave non-trivially :

hybrids

excited gluonic field in presence of quarks called a hybrid meson

lattice QCD calculations seem to indicate their presence in the spectrum

hybrids

excited gluonic field in presence of quarks called a hybrid meson

Tuesday, June 8, 2010

obviously we'll seek hybrids as resonances in multi-meson final states

hadronic decay models tend to suggest that high multiplicity final states are preferred ...

e.g. $\pi_1^0 \rightarrow \pi^+ b_1^0 \rightarrow \pi^+ \pi^0 \omega \rightarrow \pi^+ \pi^0 \pi^+ \pi^- \pi^0 \rightarrow \pi^+ \pi^+ \pi^- \gamma \gamma \gamma \gamma$

three charged and four uncharged particles !

event-based analysis

data description on an event-by-event basis

the exp^{tal} data is not corrected for the detector acceptance, the theory is

very simple example :

amplitude =

$$\sum_{i} V_{i}(s, t, s_{\pi\pi}) \times A_{i}(\theta_{\rm GJ}, \phi_{\rm GJ})$$

$$\left(A_i(\theta_{\rm GJ},\phi_{\rm GJ}) = \mathcal{D}_{m_i,0}^{(J_i)}(\phi_{\rm GJ},\theta_{\rm GJ},0)\right)$$

each event is a set of particle 4-vectors determining *s*, *t*, *s*_{ππ}, θ_{GJ} , ϕ_{GJ}

fit variables are the V_i

ntensity
$$I = \left|\sum_{i} V_{i}A_{i}\right|^{2} = \sum_{i,j} V_{i}V_{j}^{*}A_{i}A_{j}^{*}$$

bin events in small regions of (s, t, s_{ππ})

maximum likelihood

in a given bin of (s, t, $s_{\pi\pi}$), define a likelihood via a product over all events (r) in that bin

$$\mathcal{L} = \frac{e^{-\mu}\mu^{N}}{N!} \prod_{\substack{r=1 \\ \text{stats.}}}^{N} \frac{\eta(\vec{\kappa}_{r})I(\vec{\kappa}_{r},\vec{V})}{\int d\vec{\kappa} \ \eta(\vec{\kappa})I(\vec{\kappa},\vec{V})}$$

taken account of the detection efficiency for each event kinematics :

$$\eta(ec\kappa_r)$$

$$\mu = \int d\vec{\kappa} \ \eta(\vec{\kappa}) I(\vec{\kappa}, \vec{V})$$

$$\ln \mathcal{L} = \sum_{r=1}^{N} \ln \left(\sum_{i,j} V_i V_j^* A_i(\vec{\kappa}_r) A_j^*(\vec{\kappa}_r) \right) \quad \text{varies event-by-event - no } \eta!$$

$$- \sum_{i,j} V_i V_j^* \int d\vec{\kappa} \ \eta(\vec{\kappa}) A_i(\vec{\kappa}) A_j^*(\vec{\kappa}) \quad \eta \text{ corrects the 'theory'} \quad \text{no 'division by small numbers'}$$

$$\text{vary } V_i \text{ until the log-likelihood} \text{ is maximised - variation gives} \text{ error estimates} \quad \prod_{i=1}^{i} \prod_{j=1}^{i} \prod_{i=1}^{i} \prod_{j=1}^{i} \prod_$$

pion beams

Tuesday, June 8, 2010

higher multiplicity analysis

е.д. пр→пппр

starts getting increasingly model dependent - common approach is the *isobar model*

 J^P

parameterising the decay amplitude

'isobars'
$$u_s = (f_0,
ho_1, f_2 \dots)$$

1(2)

23

 $S3\pi$

s(fixed)

isobar model application

Compass $\pi^{-} Pb \rightarrow \pi^{-} \pi^{-} \pi^{+} Pb$

	0-+	0+	S	$(\pi\pi)_{S}\pi$	_
	0-+	0+	S	$f_0\pi$	1.400
	0-+	0+	Р	$\rho\pi$	—
	1-+	1+	P	$\rho\pi$	—
	1++	0+	S	ρπ	_
	1++	0+	Р	$f_2\pi$	1.200
	1++	0+	Р	$(\pi\pi)_S\pi$	0.840
	1++	0+	D	$\rho\pi$	1.300
	1++	1+	S	$\rho\pi$	_
	1++	1+	Р	$f_2\pi$	1.400
	1++	1+	Р	$(\pi\pi)_{S}\pi$	1.400
	1++	1+	D	$\rho\pi$	1.400
	2-+	0+	S	$f_2\pi$	1.200
	2-+	0+	Р	$\rho\pi$	0.800
	2-+	0+	D	$f_2\pi$	1.500
	2-+	0+	D	$(\pi\pi)_{S}\pi$	0.800
	2-+	0+	F	$\rho\pi$	1.200
	2-+	1+	S	$f_2\pi$	1.200
	2-+	1+	Р	$\rho\pi$	0.800
	2-+	1+	D	$f_2\pi$	1.500
	2-+	1+	D	$(\pi\pi)_{S}\pi$	1.200
	2-+	1+	F	$\rho\pi$	1.200
	2++	1+	Р	$f_2\pi$	1.500
	2++	1+	D	ρπ	—
	3++	0+	S	$\rho_3\pi$	1.500
	3++	0+	Р	$f_2\pi$	1.200
	3++	0+	D	$\rho\pi$	1.500
	3++	1+	S	$\rho_3 \pi$	1.500
	3++	1+	Р	$f_2\pi$	1.200
	3++	1+	D	$\rho\pi$	1.500
	4-+	0+	F	ρπ	1.200
	4-+	1+	F	$\rho\pi$	1.200
,	4++	1+	F	$f_2\pi$	1.600
	4++	1+	G	ρπ	1.640
	1-+	0-	Р	ρπ	_
	1-+	1-	Р	$\rho\pi$	_
	1++	1-	S	$\rho\pi$	_
	2-+	1-	S	$f_2\pi$	1.200
	2++	0-	Р	$f_2\pi$	1.300

1 PC

 M^{a}

L

Isobar π

Threshold [GeV/c2]

model contains sufficient angular dependence to pull out e.g. weak high-spin waves

isobar model - phases

$$T^{J}_{\ell,s}(s_{3\pi}, s_{23}, s_{13}) = C^{J}_{\ell,s}(s_{3\pi}) \frac{1}{\mathbb{D}_s(s_{23})} \times \dots$$

suppose only (13), (23) interact strongly

& ignore multiple channels $J = \ell = s = 0$

$$F_{\text{iso.}}(s_{3\pi}, s_{13}, s_{23}) = \frac{C_{13}(s_{3\pi})}{\mathbb{D}_{13}(s_{13})} + \frac{C_{23}(s_{3\pi})}{\mathbb{D}_{23}(s_{23})}$$

but more generally we can have

$$F(s_{3\pi}, s_{13}, s_{23}) = \frac{\phi_{13}(s_{3\pi}, s_{13})}{\mathbb{D}_{13}(s_{13})} + \frac{\phi_{23}(s_{3\pi}, s_{23})}{\mathbb{D}_{23}(s_{23})}$$

but more generally we can have

2-body unitarity in the (23) channel \Rightarrow

 ϕ_{23}

$$F(s_{3\pi}, s_{13}, s_{23}) = \frac{\phi_{13}(s_{3\pi}, s_{13})}{\mathbb{D}_{13}(s_{13})} + \frac{\phi_{23}(s_{3\pi}, s_{23})}{\mathbb{D}_{23}(s_{23})}$$

$$(s_{23}^+, s_{3\pi}) - \phi_{23}(\bar{s}_{23}, s_{3\pi})$$

= $2i \rho(s_{23}) \mathbb{N}_{23}(s_{23}) \frac{1}{2} \int_{-1}^{+1} dx_1 \frac{\phi_{13}(s_{13}, s_{3\pi})}{\mathbb{D}_{13}(s_{13})}$

 $\phi_{23}(s_{23})$ needs a discontinuity in s_{23} !

isobar model doesn't have this - violates unitarity

"... this is one good reason why the isobar model is open to criticism, particularly if the **phase** of the ϕ functions are important ... since functions with a branch point have a habit of developing a varying phase." (*I.J.R. Aitchison, 1975*)

could 'weak' wave phases/intensities be artifacts of the isobar model ?

1970's investigation

Wyld et al. - U.Illinois

implement the required discontinuity using a **K**-matrix

rather unsuccessful - fits to $\pi\pi\pi$ data worse than isobar mode

FIG. 7. χ^2 difference between U (unitarized) and NU (nonunitarized) fits to the Serpukhov data (Refs. 8 and 9).

K-matrix form \rightarrow analyticity \rightarrow spurious phase motion

boiled down to an on-shell Faddeev system

1970's investigation

Wyld et al. - U.Illinois

probably the origin of

- * asymmetric ρ peak
- * peculiar a_1 lineshape in $\pi\pi\pi$
- * $π_2$ mass shift in $f_2 π$ S and D-waves

Tuesday, June 8, 2010

summary

GlueX plans an ambitious program of meson photoproduction

through efficient detection of charged and neutral particles collect data on high-multiplicity end states

analysis plans to use event-based methods - software developed to 'plug in' any amplitudes

isobar model is state-of-the-art

has its problems

needs to be determined how robust are weak waves to correcting unitarity

mass-dependent analysis is unlikely to be as simple as BW (as EBAC knows well)

more q.n.'s in meson sector - less resonance overlap - *might* be easier