Physics at GlueX

Jo Dudek JLab Theory Center & Old Dominion University

GlueX

12 GeV electron beam → 9 GeV linearly polarised photon beam (or higher **E** with lower polarisation)

hybrids

one simple way to get exotic quantum numbers is by adding a gluonic degree-of-freedom

we know that strongly coupled glue can behave non-trivially :

hybrids

excited gluonic field in presence of quarks called a hybrid meson

lattice QCD calculations seem to indicate their presence in the spectrum

hybrids

excited gluonic field in presence of quarks called a hybrid meson

obviously we'll seek hybrids as resonances in multi-meson final states

hadronic decay models tend to suggest that high multiplicity final states are preferred ...

 $\boxed{\mathsf{e.g.}\, \pi_1^0 \to \pi^+ \mathsf{b}_1^0 \to \pi^+ \pi^0 \omega \to \pi^+ \pi^0\, \pi^+ \pi^- \pi^0 \to \pi^+ \pi^+ \pi^-\gamma\, \gamma\, \gamma\, \gamma\, \gamma\,}$ three charged and four

uncharged particles !

event-based analysis

data description on an event-by-event basis

the exp t ^{al} data is not corrected for the detector acceptance, the theory is

very simple example :

amplitude =

$$
\sum_{i} V_{i}(s, t, s_{\pi\pi})
$$

$$
\times A_{i}(\theta_{\text{GJ}}, \phi_{\text{GJ}})
$$

$$
\left(A_i(\theta_{\rm GJ},\phi_{\rm GJ})=\mathcal{D}^{(J_i)}_{m_i,0}(\phi_{\rm GJ},\theta_{\rm GJ},0)\right)
$$

each event is a set of particle 4-vectors determining $s, t, s_{\pi\pi}, \theta_{\text{GJ}}, \varphi_{\text{GJ}}$

fit variables are the V_i

intensity
$$
I = \left| \sum_i V_i A_i \right|^2 = \sum_{i,j} V_i V_j^* A_i A_j^*
$$

bin events in small regions of (s, t, s_{nn})

maximum likelihood

in a given bin of (s, t, $s_{\pi\pi}$), define a likelihood via a product over all events (r) in that bin

$$
\mathcal{L} = \frac{e^{-\mu} \mu^N}{N!} \prod_{r=1}^N \frac{\eta(\vec{\kappa}_r) I(\vec{\kappa}_r, \vec{V})}{\int d\vec{\kappa} \eta(\vec{\kappa}) I(\vec{\kappa}, \vec{V})}
$$

- Poisson - $\frac{1}{\text{stats.}}$

taken account of the detection efficiency for each event kinematics :

$$
\left[\eta\big(\vec{\kappa}_{r}\big)\right]
$$

$$
\mu = \int \! d\vec{\kappa} \; \eta(\vec{\kappa}) I(\vec{\kappa}, \vec{V})
$$

pion beams

 $eg. \pi p \rightarrow \pi \pi n p$

parameterising the decay amplitude

$$
\text{``isobars'} \quad \nu_s = (f_0, \rho_1, f_2 \ldots)
$$

➀ ⎧ ⎧ ⎧ ➁ ⎩➂ ⎩⎩ ⎧⎩amplitudes to be fitted isobar propagator (supplied) (simplified notation)

isobar model application | Compass

 $π$ - Pb $→ π$ - π- $π$ + Pb

S $\rho\pi$ $\overline{}$ 1.200 P $f_2\pi$ \boldsymbol{P} 0.840 $(\pi\pi)_{\text{S}}\pi$ D 1.300 ρπ S ρπ $\overline{}$ P 1.400 $f_2\pi$ \boldsymbol{P} $(\pi\pi)_{\text{S}}\pi$ 1.400 D 1.400 ρπ S $f_2\pi$ 1.200 \boldsymbol{P} 0.800 $\rho \pi$ D $f_2\pi$ 1.500 $(\pi\pi)_{\text{S}}\pi$ D 0.800 F 1.200 $\rho\pi$ S 1.200 $f_2\pi$ P 0.800 $\rho \pi$ D 1.500 $f_2\pi$ D 1.200 $(\pi\pi)_{\text{S}}\pi$ F 1.200 $\rho\pi$ \boldsymbol{P} $f_2\pi$ 1.500 D $\rho\pi$ S 1.500 $\rho_3\pi$ \boldsymbol{P} 1.200 $f_2\pi$ D 1.500 ρπ S 1.500 $\rho_3\pi$ P 1.200 $f_2\pi$ D 1.500 $\rho \pi$ F 1.200 $\rho \pi$ F 1.200 $\rho \pi$ F $f_2\pi$ 1.600 G $\rho\pi$ 1.640 \boldsymbol{P} $\rho \pi$ \boldsymbol{P} $\rho \pi$ S $\rho \pi$ $f_2\pi$ 1.200 S 1.300 P $f_2\pi$ model contains sufficient angular dependence to pull out e.g. weak high-spin waves

Threshold [GeV/c²]

1.400

 $\hspace{0.05cm}$

-

 J^{PC}

 0^{-+}

 0^{-+}

 M^c

 0^+

 0^+

L

S

S

P

P

Isobar π

 $(\pi\pi)_{\text{S}}\pi$

 $f_0\pi$

 $\rho \pi$

 $\rho\pi$

isobar model - phases | Compass

$$
T_{\ell,s}^J(s_{3\pi}, s_{23}, s_{13}) = C_{\ell,s}^J(s_{3\pi}) \frac{1}{\mathbb{D}_s(s_{23})} \times \dots
$$

suppose only (13), (23) interact strongly

 $\boxed{\text{\&}$ ignore multiple channels $\,J=\ell=s=0\,$

$$
F_{\mathrm{iso.}}(s_{3\pi}, s_{13}, s_{23}) = \frac{C_{13}(s_{3\pi})}{\mathbb{D}_{13}(s_{13})} + \frac{C_{23}(s_{3\pi})}{\mathbb{D}_{23}(s_{23})}
$$

but more generally we can have

$$
F(s_{3\pi}, s_{13}, s_{23}) = \frac{\phi_{13}(s_{3\pi}, s_{13})}{\mathbb{D}_{13}(s_{13})} + \frac{\phi_{23}(s_{3\pi}, s_{23})}{\mathbb{D}_{23}(s_{23})}
$$

but more generally we can have

2-body unitarity in the (23) channel \Rightarrow

$$
\mathbb{M}(s_{ab}) \equiv \frac{\mathbb{N}(s_{ab})}{\mathbb{D}(s_{ab})}
$$
\n
$$
\mathbb{M}(s_{ab}^+) - \mathbb{M}(s_{ab}^-) = 2i \rho(s_{ab}) \mathbb{M}(s_{ab}^+) \mathbb{M}(s_{ab}^-)
$$
\n
$$
\underbrace{\qquad \qquad}_{2m_{\pi}} \underbrace{\qquad \qquad}_{2m_{\pi}} \underbrace{\qquad \qquad}_{3\bar{a}b}
$$

$$
F(s_{3\pi}, s_{13}, s_{23}) = \frac{\phi_{13}(s_{3\pi}, s_{13})}{\mathbb{D}_{13}(s_{13})} + \frac{\phi_{23}(s_{3\pi}, s_{23})}{\mathbb{D}_{23}(s_{23})}
$$

$$
\phi_{23}(s_{23}^+, s_{3\pi}) - \phi_{23}(s_{23}^-, s_{3\pi})
$$

= $2i \rho(s_{23}) \mathbb{N}_{23}(s_{23}) \frac{1}{2} \int_{-1}^{+1} dx_1 \frac{\phi_{13}(s_{13}, s_{3\pi})}{\mathbb{D}_{13}(s_{13})}$

 $\Phi_{23}(s_{23})$ needs a discontinuity in $s_{23}!$

isobar model doesn't have this - violates unitarity

"... this is one good reason why the isobar model is open to criticism, particularly if the **phase** of the φ functions are important ... since functions with a branch point have a habit of developing a varying phase." (I.J.R. Aitchison, 1975)

> could 'weak' wave phases/intensities be artifacts of the isobar model?

1970's investigation | Wyld et al. - U.Illinois

implement the required discontinuity using a K-matrix **builed down to an on-shell Faddeev system**

rather unsuccessful - fits to πππ data worse than isobar mode

FIG. 7. χ^2 difference between U (unitarized) and NU (nonunitarized) fits to the Serpukhov data (Refs. 8 and 9).

K-matrix form → analyticity → spurious phase motion

1970's investigation | Wyld et al. - U.Illinois

probably the origin of

- * asymmetric ρ peak
- $*$ peculiar a_1 lineshape in $\pi\pi\pi$
- $*$ π₂ mass shift in $f_2\pi$ S and D-waves

summary

GlueX plans an ambitious program of meson photoproduction

through efficient detection of charged and neutral particles collect data on high-multiplicity end states

analysis plans to use event-based methods - software developed to 'plug in' any amplitudes

isobar model is state-of-the-art

has its problems

needs to be determined how robust are weak waves to correcting unitarity

mass-dependent analysis is unlikely to be as simple as BW (as EBAC knows well)

more q.n.'s in meson sector - less resonance overlap - **might** be easier