Quark model calculations of N to Roper resonance EM transition amplitudes



## EM transition form factors

- Rigorous approaches underway:
  - Schwinger-Dyson Bethe-Salpeter studies
  - Lattice QCD
- Relativistic quark-model calculations
  - Most reliable use light-front dynamics to improve one-body current
    - Terent'ev, Weber, Dziembowski, Chung & Coester, Schlumpf, Aznauryan, Rome group, Julia-Diaz, Riska and Coester, Miller
    - Relativistic effects are large
      - Need to remove interaction dependence of boosts
      - Minimize effect of ignored two-body currents
    - Can also use point, instant forms

Giannini and Santopinto-2004

- Tiator et al. EPJ A (2004) 19, s01, 55
- NR model using hyper-central CQM
  - $V(x) = -\tau/x + \alpha x$ ,  $x = (\rho^2 + \lambda^2)^{\frac{1}{2}}$
  - Hyperfine interaction, isospin-dependent terms
  - Fit  $\tau$  &  $\alpha$  and hyperfine strength to spectrum, use wave functions in a non-relativistic calculation of the EM transition form factors



MAID fit,  $\pi$  cloud, model

- No calculation of  $N\pi$  sign
- Note  $A^{p_{\frac{1}{2}}}$  does not cross zero

#### Julia-Diaz, Riska and Coester-2004

- Julia-Diaz, Riska and Coester, PRC 69 (035212)
   2004
  - use simple wave functions depending on hyperspherical momentum  $P^2 \sim p_{\rho}^2 + p_{\lambda}^2$  (perm. symmetric and Lorentz invariant)
    - Nucleon  $\phi_0(P) = N (1+P^2/4b^2)^{-\alpha}$ ,
    - b and a: range and shape parameters
    - Roper  $\phi_1(P)$  orthogonal, normalized, FT has a single node
  - Use point form, front form & instant form of relativistic kinematics to evaluate vector EM current
    - change a and b to fit nucleon elastic form factors separately for each form

#### Julia-Diaz, Riska and Coester-2004



Simon Capstick, Florida State University

EBAC Workshop, JLab 5/27/10

- I.G. Aznauryan, PRC 76 (025212) 2007
  - Light-front relativistic quark model
    - Wave functions depend on the sum of the totallysymmetric invariant mass squared of the quarks, M<sub>0</sub><sup>2</sup> (expressed in light-cone coordinates

 $p^{\mu} = [p^+ = p_0 + p_3, p^- = (m^2 + p_T^2)/p^+, p_T]; p^2 = p^+ p^- - p_T^2$ 

- 3 denotes (spin) quantization axis,  $\mathbf{p}_T = (p_1, p_2)$
- Distribution of invariant momentum fractions  $x_i = p_i^+/P^+$ (P =  $\sum_i p_i$  for + and transverse components) can be measured in high-energy DIS and elastic scattering

- Relative four-momenta for three-body system (see Weber)
  - $k = (x_2 p_1 x_1 p_2)/(x_1 + x_2)$  $K = (x_1 + x_2) p_3 - x_3(p_1 + p_2)$
  - Space-like, since  $k^+ = K^+ = 0$  so  $k^2 = -k_T^2$ ,  $K^2 = -K_T^2$
  - In static limit ( $|\mathbf{p}| \ll m$ ),  $x_i \rightarrow m_q/m_N \sim 1/3$ 
    - $\mathbf{k} \sim \mathbf{p}_{\rho}$ ,  $\mathbf{K} \sim \mathbf{p}_{\lambda}$  (usual three-body Jacobi coordinates)
  - Volume element in momentum space is 6D

$$d\Gamma = (dx_1/x_1) (dx_2/x_2) (dx_3/x_3) \delta(1-x_1-x_2-x_3) dk_T^2 dK_T^2 / (16\pi^3)^2$$

- Nucleon and Roper wave functions:  $\phi_N(M_0^2) \sim \exp(-M_0^2/6\alpha_{HO}^2)$  $\phi_R(M_0^2) = N(\beta^2 - M_0^2)\phi_N(M_0^2)$
- Depend on totally symmetric invariant mass squared of three-body system

 $M_0^2 = -k^2(1-x_3)/(x_1x_2) - K^2/[x_3(1-x_3)] + \sum_i m_q^2/x_i$ 

- Normalized and orthogonal over six-dimensional phase-space volume
  - Parameters are quark mass (0.22 GeV) and  $\alpha_{HO}$  = 0.38 GeV (fit to nucleon static properties)

 Resulting form factors are integrals over six-dimensional phase space of:

(kinematic factors)  $\phi_N(M_0^2) \phi_R(M_0'^2) d\Gamma$ 

- Signs of  $N\pi$  decay amplitudes found using PCAC argument

Electro/photo-production amplitude signs

- Experiments measure interference of products of amplitudes  $A^{+}_{X-\gamma N} A_{X-N\pi}$  with nucleon Born term and/or each other
- Phase of either depends on sign conventions in N and X wave fns



Phase of product does not!

Electro/photo-production amplitude signs...

- Photo- and electro-production amplitudes quoted in analyses are the products  $A^{\dagger}_{X-\gamma N} A_{X-N\pi} / |A_{X-N\pi}|$ 
  - Phase of  $A_{X\text{-}N\pi}$  not measurable in  $N\pi$  elastic scattering
  - Theorists must calculate  $A_{X \rightarrow N\pi}$  with exactly the same X and N wave functions used to calculate  $A_{X \rightarrow \gamma N}$
  - We use  ${}^{3}P_{0}$  model





EBAC Workshop, JLab 5/27/10



## Light-front calculations-Rome group-1997

- Cardarelli, Pace, Salme and Simula
  - Used CI wave functions and light-front techniques to evaluate transition amplitudes
    - Quarks have  $f_1$  and  $f_2(Q^2)$  form factors
      - $\kappa_{\rm u}$  = +0.085,  $\kappa_{\rm d}$  = -0.153 fit to nucleon moments
      - $f_{1q}$  linear combination of monopole and dipole
      - $f_{2q}/\kappa$  linear combination of dipole and quadrupole
      - Different  $\Lambda^2$  values for each flavor of quark and type of form factor
        - » 12 parameters (in addition to anomalous moments) fit to nucleon and pion elastic form factors

#### Light-front calculations-Rome group-1997



Simon Capstick, Florida State University

EBAC Workshop, JLab 5/27/10





## Work with Brad Keister

- Calculations of EM transition form factors from N to N\*
  - Light-cone (relativistic) quark model fit to nucleon elastic form factors
  - Baryon wave functions found by solving a three-quark Hamiltonian
  - Calculate strong-decay signs using pair-creation ( ${}^{3}P_{0}$ ) model

# Light-cone model of EM form factors

- Construct baryon wave functions in baryon CM frame in terms of free-particle lightfront spinors
  - Bakamjian-Thomas construction
- Evaluate matrix elements of one-body EM current using these wave functions
- Find helicity amplitudes for EM transitions in terms of reduced matrix elements

Light-front dynamics

- Light-front Hamiltonian dynamics
  - Constituents are treated as particles rather than fields
  - Certain combinations of boosts and rotations are independent of the interactions which govern quark dynamics
    - Simplifies calculations of matrix elements in which composite baryons recoil with large momenta
  - Use complete orthonormal set of basis states
    - Composed of three constituent quarks
    - Satisfy rotational covariance

### Calculation scheme

- Bakamjian and Thomas scheme:
  - Three-body relativistic bound-state problem is solved for the wave functions of baryons with the assumption of three interacting constituent quarks
  - Wave functions used to calculate the matrix elements of one (and in principle, two, and three)-body electromagnetic current operators

#### Calculational details

- Expand in sets of free-particle states:
  - Evaluate I<sup>+</sup> (EM) current matrix element by expanding baryon wave function in terms of light-front spinors for the quarks

$$\begin{split} \langle M'j; \tilde{\mathbf{P}}'\mu'|I^{+}(0)|Mj; \tilde{\mathbf{P}}\mu\rangle &= \\ (2\pi)^{-18} \int d\tilde{\mathbf{p}}_{1}' \int d\tilde{\mathbf{p}}_{2}' \int d\tilde{\mathbf{p}}_{3}' \int d\tilde{\mathbf{p}}_{3} \int d\tilde{\mathbf{p}}_{1} \int d\tilde{\mathbf{p}}_{2} \int d\tilde{\mathbf{p}}_{3} \sum \langle M'j'; \tilde{\mathbf{P}}'\mu'|\tilde{\mathbf{p}}_{1}'\mu_{1}'\tilde{\mathbf{p}}_{2}'\mu_{2}'\tilde{\mathbf{p}}_{3}'\mu_{3}'\rangle \\ \times \langle \tilde{\mathbf{p}}_{1}'\mu_{1}'\tilde{\mathbf{p}}_{2}'\mu_{2}'\tilde{\mathbf{p}}_{3}'\mu_{3}'|I^{+}(0)|\tilde{\mathbf{p}}_{1}\mu_{1}\tilde{\mathbf{p}}_{2}\mu_{2}\tilde{\mathbf{p}}_{3}\mu_{3}\rangle \langle \tilde{\mathbf{p}}_{1}\mu_{1}\tilde{\mathbf{p}}_{2}\mu_{2}\tilde{\mathbf{p}}_{3}\mu_{3}|Mj; \tilde{\mathbf{P}}\mu\rangle. \end{split}$$

 Need baryon state vectors written in terms of wave functions



Calculational details...

- Expand in sets of free-particle states:

 $\langle ilde{\mathbf{p}}_1 \mu_1 ilde{\mathbf{p}}_2 \mu_2 ilde{\mathbf{p}}_3 \mu_3 | Mj; ilde{\mathbf{P}} \mu 
angle =$ 

 $\begin{aligned} &\left|\frac{\partial(\tilde{\mathbf{p}}_{1},\tilde{\mathbf{p}}_{2},\tilde{\mathbf{p}}_{3})}{\partial(\tilde{\mathbf{P}},\mathbf{k}_{1},\mathbf{k}_{2})}\right|^{-1/2} (2\pi)^{3} \delta(\tilde{\mathbf{p}}_{1}+\tilde{\mathbf{p}}_{2}+\tilde{\mathbf{p}}_{3}-\tilde{\mathbf{P}}) \langle \frac{1}{2}\bar{\mu}_{1}\frac{1}{2}\bar{\mu}_{2}|s_{12}\mu_{12}\rangle \langle s_{12}\mu_{12}\frac{1}{2}\bar{\mu}_{3}|s\mu_{s}\rangle \\ &\times \langle l_{\rho}\mu_{\rho}l_{\lambda}\mu_{\lambda}|L\mu_{L}\rangle \langle L\mu_{L}s\mu_{s}|j\mu\rangle Y_{l_{\rho}\mu_{\rho}}(\hat{\mathbf{k}}_{\rho})Y_{l_{\lambda}\mu_{\lambda}}(\hat{\mathbf{K}}_{\lambda})\Phi(k_{\rho},K_{\lambda}) \\ &\times D_{\bar{\mu}_{1}\mu_{1}}^{(1/2)\dagger}[\underline{R}_{cf}(k_{1})]D_{\bar{\mu}_{2}\mu_{2}}^{(1/2)\dagger}[\underline{R}_{cf}(k_{2})]D_{\bar{\mu}_{3}\mu_{3}}^{(1/2)\dagger}[\underline{R}_{cf}(k_{3})]. \end{aligned}$ 

Calculational details...

- Cluster expansion of electromagnetic current operator  $I^{\mu}(x) = \sum_{j} I^{\mu}_{j}(x) + \sum_{j < k} I^{\mu}_{jk}(x) + \cdots$
- We evaluate only one-body matrix elements and assume struck quark has EM current of free Dirac particle

$$\langle \tilde{\mathbf{p}}' \mu' | I^+(0) | \tilde{\mathbf{p}} \mu \rangle = F_{1q}(Q^2) \delta_{\mu'\mu} - i(\sigma_y)_{\mu'\mu} \frac{Q}{2m_i} F_{2q}(Q^2)$$

 Result is a 6D integral that we evaluate using numerical techniques [quasi-random number (Sobol) sequences]

# Light-cone model...

• Wave functions expanded in h.o. basis up to N=6 or 7 ( $h\omega$ )

- e.g. 50 components for N and Roper, 70 for  $N(1535)S_{11}$ 

- Requires simultaneous calculation of strong-decay amplitudes
  - Calculate  $N\pi$  sign using  ${}^3P_0$  model using identical wave functions
- Fit quark EM form factors to nucleon EM form factors (moments and Q<sup>2</sup> dependence)
  - Similar to calculations performed by Rome group (Cardarelli, Pace, Salme, Simula), but simpler F<sub>1q</sub>, F<sub>2q</sub>

## Model of spectrum and wave functions

- Confinement:
  - Flux tubes, combined with adiabatic approx.
  - minimum length string:  $V_B(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \sigma(l_1 + l_2 + l_3) = \sigma L_{min}$
  - linear at large q-junction separations



- Ground-state spectrum suggests flavor-dependent shortrange (contact) interactions
- Use OGE (other possibilities: OBE, instanton-induced interactions)



#### Wave functions

- Variational calculation in large HO basis (SC, N. Isgur)
  - String confinement, plus associated spin-orbit
  - Include OGE Coulomb, contact, tensor, spinorbit
  - Relativistic KE, relativistic corrections in potentials, e.g.

$$\left(\frac{m_i m_j}{E_i E_j}\right)^{\frac{1}{2} + \epsilon_{\rm cont}} \frac{8\pi}{3} \alpha_s(r_{ij}) \frac{2}{3} \frac{\mathbf{S}_i \cdot \mathbf{S}_j}{m_i m_j} \left[\frac{\sigma_{ij}^3}{\pi^{\frac{3}{2}}} e^{-\sigma_{ij}^2 r_{ij}^2}\right] \left(\frac{m_i m_j}{E_i E_j}\right)^{\frac{1}{2} + \epsilon_{\rm cont}}$$

- Contact interaction smeared with Gaussian form factor,  $\sigma_{ij}$  depends on quark flavor (1.8 GeV for light quarks)





EBAC Workshop, JLab 5/27/10

Proton electric form factor



EBAC Workshop, JLab 5/27/10



Roper resonance transverse amplitude



Simon Capstick, Florida State University

EBAC Workshop, JLab 5/27/10

NR limit of light-front calculations?

- NR: turn off Jacobians, Melosh rotations, relativistic kinematics (not true NR limit!)

$$\begin{split} &\langle \tilde{\mathbf{p}}_{1} \mu_{1} \tilde{\mathbf{p}}_{2} \mu_{2} \tilde{\mathbf{p}}_{3} \mu_{3} | Mj; \tilde{\mathbf{P}} \mu \rangle = \\ & \left| \frac{\partial (\tilde{\mathbf{p}}_{1}, \tilde{\mathbf{p}}_{1}, \tilde{\mathbf{p}}_{3})}{\delta (\tilde{\mathbf{P}}, \mathbf{k}_{1}, \mathbf{k}_{2})} \right|^{-1/2} (2\pi)^{3} \delta (\tilde{\mathbf{p}}_{1} + \tilde{\mathbf{p}}_{2} + \tilde{\mathbf{p}}_{3} - \tilde{\mathbf{P}}) \langle \frac{1}{2} \bar{\mu}_{1} \frac{1}{2} \bar{\mu}_{2} | s_{12} \mu_{12} \rangle \langle s_{12} \mu_{12} \frac{1}{2} \bar{\mu}_{3} | s \mu_{s} \rangle \\ & \times \langle l_{\rho} \mu_{\rho} l_{\lambda} \mu_{\lambda} | L \mu_{L} \rangle \langle L \mu_{L} s \mu_{s} | j \mu \rangle Y_{l_{\rho} \mu_{\rho}} (\hat{\mathbf{k}}_{\rho}) Y_{l_{\lambda} \mu_{\lambda}} (\hat{\mathbf{K}}_{\lambda}) \Phi(k_{\rho}, K_{\lambda}) \\ & \times D_{\tilde{\mu}_{1} \mu_{1}}^{(1/2)\dagger} | \underline{h}_{cf}(k_{1}) \rangle D_{p_{1} \mu_{s}}^{(1/2)\dagger} [ \underline{P}_{1}(k_{2}) \rangle D_{\tilde{\mu}_{3} \mu_{3}}^{(1/2)\dagger} | \underline{R}_{cf}(k_{3}) ]. \end{split}$$



EBAC Workshop, JLab 5/27/10



EBAC Workshop, JLab 5/27/10

Roper resonance scalar amplitude



EBAC Workshop, JLab 5/27/10

Roper resonance scalar amplitude



EBAC Workshop, JLab 5/27/10

Roper resonance scalar amplitude



EBAC Workshop, JLab 5/27/10



EBAC Workshop, JLab 5/27/10



EBAC Workshop, JLab 5/27/10

## Rotational covariance

- States with higher J
  - Rotations are dynamical in light-front QM
  - It is possible to quantify the violation of rotational covariance by forming a linear combination of light-front spin matrix elements which should be zero
    - E.g. for  $\Delta(1232)$  there is one such combination
      - Becomes comparable to  $A^{p}_{3/2}$ ,  $A^{p}_{1/2}$  only at higher  $Q^{2}$
      - Calculation of sub-dominant amplitudes (E1+, S1+)
         believable at Q<sup>2</sup> below roughly 2 GeV<sup>2</sup>
    - Non-zero because calculation truncated at one-body currents

## Rotational covariance...

- For states with J=5/2 there are three linear combinations which should be zero
  - For N5/2<sup>+</sup>(1680) these may not small at 1 GeV<sup>2</sup>
- Some authors claim to have a work around for J=1/2
  - Evaluate light-front matrix elements of other components of the EM current, take linear combinations to eliminate matrix elements which must be zero
  - But there is no free lunch for higher J!
    - If use other components of I, don't have minimal set of matrix elements which transform into each other under boosts



# Conclusions/Outlook

- Relativistic calculations using light-front dynamics get sign of N to Roper  $A^{p_{\frac{1}{2}}}$  to change
  - Crosses zero at lower Q<sup>2</sup> than amplitude extracted from data
  - Non-relativistic calculations (and light-front calculations with some relativistic effects turned off) do not see this
  - Must calculate  $N\pi$  sign in model
  - Size and Q<sup>2</sup> dependence quite sensitive to short-range interactions between quarks
- N to Roper  $S^{p}_{\frac{1}{2}}$  predicted a little too large,  $Q^{2}$  dependence reasonable
- Neutron target amplitudes give new information
- To be believable, models should fit nucleon elastic form factors and other transition form factors!

Delta resonance transverse amplitude



EBAC Workshop, JLab 5/27/10



EBAC Workshop, JLab 5/27/10

#### $N(1535)S_{11}$ resonance transverse amplitude



EBAC Workshop, JLab 5/27/10

 $N(1535)S_{11}$  resonance transverse amplitude



EBAC Workshop, JLab 5/27/10

 $N(1535)S_{11}$  resonance scalar amplitude



EBAC Workshop, JLab 5/27/10

 $N(1535)S_{11}$  resonance scalar amplitude



EBAC Workshop, JLab 5/27/10