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Observation (CLEQO, Belle and BaBar) of scalar and vector resonances in heavy-meson
decays corroborates two-decade old LLASS results on kaon-pion scattering.

Heavy effective field theory, QCD factorization and hadronix matrix elements.

Description of pion-kaon pair creation in S- and P-waves by appropriate Jtrange scalar
and vector form factors.

Pion-kaon interactions from threshold to 2 GeV divided into a

low-energy domain: form factors obtained from chiral perturbation predictions.

larger energies: parametrization of pion-kaon scattering with a coupled-channel
T-matrix model that includes any appropriate resonances.

Localization of poles in complex kaon-pion energy plane (Riemann sheets) allows

clean separation of resonance from pion-kaon background contributions.

Make use of the form factors to obtain the K (1430) and K" (892) decay constants.
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~ Scalar and vector kaons in pion-kaon scattering

Knowledge about phase shifts and inelasticities from pion and kaon production experiments (LASS data)

High statistics experiments: Estabrooks (1979), Hyams (LASS 1988)
In the case of 7K— 7K : o;and n; determined for /= 0,1, ... §
Energy domain: 0.8 GeV < E<2.5 GeV

More recent data on D — zKvl : 09 —01 determined (FOCUS collaboration)



[LASS data

D. Aston ef al. in Nucl. Phys. B296, 493 (1988)
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- Emergence of vector kaons in D-decays
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FIG. 4: The mg, distributions for events satisfying our nominal D+ — K~n£{%y, selection re-
quirements. (a) shows the my distribution for D™ — K~ 7" u" v, candidates, while (b) shows the
my distribution for D™ — K~ n"e™ v, candidates. Over the full displayed mass range, there are
11801 (6227 semielectric and 5574 semimuonic) events satisfying our nominal selection. For this
analysis, we use a restricted mass range from 0.8 — 1.0 GeV/¢?, which is the region between the ver-
tical lines. In each plot, the solid histogram shows the signal plus background distribution predicted
by our Monte Carlo simulation, while the dashed histogram shows the predicted background com-
ponent. In this restricted region, there are 10865 ( 5 658 semielectric and 5 207 semimuonic) events.
The inserted figures are on a finer scale to better show the estimated background contributions.
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Belle Collaboration, hep-ex/0509001 (2005)
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"Let me warn you, toots. Celebrity is like
radioactivity: you start with a big bang,
then have years with a half-life of slow decay.”

Weak clecag amplitucles

Effective ’1ea\/3~c]uar‘< hamiltonian

&
QCD factorization



| Quasi two-body approach

Examples of a quasi two-body decay:
B*— K,*(1430)z* followed by the hadronic decay

Ko*(1430) = (K*n¥)s in an S-wave, I=1/2 state.

Weak decay amplitude,
short distance QCD corrections

Hadronic scalar and vector
form factors

= no tree digrams, only QCD and electroweak penguins

B. E., A. Furman, R. Kaminski, L. Le$niak, B. Loiseau and B. Moussallam, Phys. Rev. D79, 094005 (2009)
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Weak effective hamiltonian

Sum of local operators O, multiplied by short-range Wilson coefficients Cy(p)
and CKM matrix elements:

G I * u M & '
H=— ViV (GO + C()0)) =V, E ¢ (w0,
i=3

V2|

O, and O, are left-handed current-current operators, for example:

O =s.y, (d-youuy (1-v,)b,
O;.... O, are QCD and electroweak penguin operators, for instance:

0,=5y,(=v)b, > qy, (-7,

qg=u,d,s,c

II



O =s,vy d=y)u,uy (1-7,)b,

II



Weak effective hamiltonian

D0, =5y, (-v)b, Y gy (-7,

qg=u,d,s,c
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Weak effective hamiltonian
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QCD factorization (two body)

Beneke, Buchalla, Neubert, Sachrajda, Phys. Rev. Lett. 83, 1914 (1999); Nucl. Phys. B 591, 313 (2000);
Nucl. Phys. B 606, 245 (2001); Beneke & Neubert, Nucl. Phys. B 675, 333 (2003).

(M M| Qi (1) | BY ~ (Ma|1[0) @ (Mi| 5| B) x |1+ 3" rpal + O(Aqen/my)|
n |

Radiative vertex corrections
and hard gluon exchange
with spectator quark

Decay constant
(mostly known experimentally)

Hadronic transition form factor;
estimated with QCD sum rules,
lattice QCD, quark models ...
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QCD factorization (quasi-two body)

B. E., A. Furman, R. Kaminski, L. Lesniak, B. Loiseau and B. Moussallam, Phys. Rev. D79, 094005 (2009)

(M1 M2)s,pMs|Qr(p)|B) ~ (M1 Mz)s,p|J1]0) ® (Ms|J2|B)
X [1 -+ Z TnOé? + O(AQCD/mb)

Scalar or vector form factor; their
definition allows for inclusion of
pion-pion and kaon-pion form
factors and the calculation of a
“resonance decay constant”

A/
X

Radiative vertex corrections and hard gluon

exchange with spectator quark
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Definition of scalar and vector zK form factors

The hadronic matrix element that describes the creation of a kaon-pion pair can be written in terms
of the usual Lorentz invariants:

(K™ (pr- )7 0r+)|57.(1 — 15)d|0) = FE ™ () 0k + Drt ) + FE (@) (DR — Prt )

with t = (pg — ]07T)2 and which can be re-expressed in terms of a scalar ' (¢ = ¢°) and a vector
G, (t = ¢°) form factor, such as:

/—\ in 5- and P-wave

(K™ (pr-)m " (et )|57(1 — 75)d|0) =

m% — m? -} m3 —m? S
= [(px— — Pt ) — Kq2 qM] Gr ™ (¢°) + Kq2 qu Fi* 7 (¢°)
B 4 B
Two sets of form factors are related by:  F (¢) = /2 [ f 7T+(t) - - S— e 7T+(t)
K s

Gr(t) = V215 (1)

These form factors also appear in semileptonic decays 7 — K7v; and K — 7wlyy
B. Moussallam, Eur.Phys.J.C53:401-412 (2008); M. Jamin, J. Oller & A. Pich, Nucl.Phys.B622:279-308 (2002).

15



+

Conditions and constraints on scalar/vector form factors

Limitation to domains of Dalitz plots in which the the 7z K* interaction with the (collinear pion)
is suppressed.

The form factors F'1(¢?) and G(g?) are analytical functions in the complex plane with a cut

along the real axis (m, + mg)? <t<oo.

Construction of a unitary, time-reversal invariant scattering matrix parametrization which
reproduces LASS data in the energy range 0.9 GeV = E = 2.5 GeV.

Inelasticity in S-wave scattering sets in at K»' threshold and is saturated by this channel; three
observable quantities: Nk, 0k and O g,y

R N s Y
= \/1 — (’I’]K»;T)Qei(éKﬂ—i_&Kn/) ,rlKﬂ_eQi(SKn/

T

2
S = Omn + 41 (qm(s)qn(s)> Trn; m, n=1, 2 with s = (pg —|—p7r)2 = m%{
S

The P-wave is dominated by the K*7 and K*p channels = 3 x3 T-matrix.

At low energies, 0.9 GeV= E, constraints from XPT and Roy-Steiner Eqns. (unitarity + crossing).
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Dominant inelastic channels for £ = 2.5 GeV: LASS (1987), LASS (1984)

-l =0 K7 dominant

-l=1 K'w via K(1410)
K'm, Kp via K*(1680)

Remark: little / =1 coupling via resonances in K and K#' = two more form factors:

<K3+(st )‘)Ia’YuSIWO(pW)) = €uvas 8“/()\)173'29:«3, HB(t)
(P (pv, N)|@vus| K~ (pk)) = —€was €™ (N)pypy Hil(t)
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Mushkelishvili-Omnés Equations

Analyticity and asymptotic conditions: dispersion relation without subtraction.

1 [ Im F; (¢
Re Fi(t) = — m F(f) dt"  (scalar form factor)
t/ —t
n (m‘rr +mK)2 o
o0 /
Re G4(t) = ! Im G1(¥) dt’ (vector form factor)
t/ —t
T J(mat+mg)? -

Unitarity equations and T-invariance:

Im F,, Z w(t)  ImGn(t) = Z

with the approximation of the truncation |n) = |K=),|Kn') for the
scalar Fi(t) and |n) = |Kn),|K*7),|Kp) for the vector G(t).

18



| Some technical remarks

The form factors satisfy a set of n coupled, homogeneous singular integral equations
with a kernel linear in the T-matrix (n = 2 for S-wave and n = 3 for P-wave).

The number of independent solutions N is given by the index of the integral
operator which can be expressed in terms of the sum of the eigenphases dj(t)
of the S-matrix: n

> [6;(00) — 6;(0)] = N

j=1

N is the number of independent conditions that one must impose on the form
factors in order to determine them from the integral equations.

Impose chiral symmetry conditions at # = 0 and near = 0 and asymptotic condition.

19



Chiral symmetry constraints in S-wave

t=0 Fi(0) =0.961, Fy(m3% —m?2) = ?—K —3.1x1073

Cheng-Dashen point \

Test variations

x t=0 Chiral symmetry constraints in P-wave
G1(0) : =14+0((m; —m)?) Ademollo-Gatto (1964)
=0.987 + O( (m; — m)*) Gasser-Leutwyler(1985)
Hy, H3: H3(0) = (1.54 +0.08) GeV ™' Chiral limit (p* — ~nt)

H3(0) = (—1.54 + 0.08 GeV ~*

HB(O) - (—134 :L' 0.07 — 65.4 CL) Gev—l a= 0(10—3)

* t=o00 QCD,Brodsky-Lepage (1980)

1672 o (Q*) F?

G1(—Q%)

Q200 Q*?
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Pole contributions on 2nd Riemann sheet and bound states

We want to define the extrapolation of the scalar form factor to the 2nd Riemann sheet in f.
Scattering is elastic up to the Kz’ threshold. The discontinuity across the cut is:

FE™(t +ie) — FE™(t —ie) = —20.5(t+ie)T3F (¢ +ie) FE™(t — ie)

with o,x(t) = 1/t\/((mk +mz)2 =)t — (mr —my)?)

Kmr
This allow us to find the extension of F' 1K ™ on the 2nd Riemann sheet : F{'(t) = ) S
1 =20k ()17 (t)
which, by definition, must satisfy F} (¢ —ie) = F{*™(t + i¢) along the cut. f
D(t) = 0 = pole

| FE™ (¢t

| 1 0

L* Flpoe(t) = ! ( ) = dD(t)/dt‘t:to

- at—t)
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S - wave

P - wave

Pole positions

Numerically, the location of the pole is found to be:
to = (1.9487 — i 0.3825) GeV?, /to = (1.4026 — i 0.1364) GeV.

Results compare reasonably well with the values of the mass Mr = (1.414 £
0.006) GeV and of the half-width I'p /2 = (0.145 £ 0.011) GeV of the K*(1430)

given by the Particle Data Group. The other quantities needed for FP°'°(t) are

FET(tg) = —0.3242 — i1.4679, o = (0.8381 +41.1713) GeV .

In the case of the K*(892) the values for the pole parameters are

t; = (0.7982 — i 0.0504) GeV?, Vit = (0.8939 — i 0.0282) GeV,
o = (—1.8874 4 i 9.5726) GeV?,  GE™(t;) = 0.8244 — i 9.0784.
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Modulus of the scalar form factor Fi*™ compared with its pole contribution

FP(e) = B (8) — F1°° (@)

Cor'nplete'
pole part —-—-—--

-
- O °

background -------- /

......

------
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Modulus of the vector form factor Gi*™ compared with its pole contribution
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Determination of fxx and fx~ in the complex pole approach

Follow definition by Maltman : (0[J*“(z)|K{(p)) = fx: m%{g exp(—ipx)
T (@) = 0u5(w)r u(a)

and find residue of the pole on the 2nd Riemann sheet of the two-point correlation function

I (t) = i [ dta explipz) O1T17* (@)(7**) ()]0}

— Ky — (31.3 + 17 7.6) MeV

The result is quasi real and comparable with the value obtained by Maltman:
fx; = 42.2 MeV; Phys. Lett. B 462, 14 (1999).

Similarly, for the vector meson : fr« ~ (213.9 — ¢ 13.6) MeV

25
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FIG. 13: Comparison of the different components of the averaged mpg- distributions of the B* —
(K*mT)sm™ decays: a) our model, b) BaBar’s LASS parametrization [11]. In this calculation our amplitude
is proportional to the scalar K form factor but that of BaBar is the part proportional to the S-wave K
T-matrix. The dashed lines correspond to the resonant K;(1430) contributions, the dotted-dashed lines to

the background, dotted lines to the interference and the solid lines to their sum.

26



Conclusive Remarks

Three-body decays of B (and D) mesons display a complex pattern of final-state interactions.

Analyses of the Dalitz plots confirm the resonance spectrum in the invariant pion-kaon
(and pion-pion) mass distributions observed by LASS.

These resonances introduce strong phases in the weak decay amplitudes and important
modifications in any CP-violating observables.

It is therefore cruczal to have a correct description of the FSI in which pole contributions
and background are unambiguously separated with a unitary amplitude for S- and P-waves.

Otherwise, the interplay of the pole, background and interference terms can be misinterpreted
and some background be claimed to be a «resonance».
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