Meson-Baryon model JM for the Nucleon Resonance Studies in Charged Double Pion Electroproduction

Victor I. Mokeev Jefferson Lab

- CLAS $\pi^+\pi^-p$ electroproduction data and JM model basic.
- Definition of resonance parameters.
- Extraction of non-resonant contributions and N* parameters from the fit of CLAS data on π+π-p electroproduction
- Conclusions and outlook

$N\pi\pi$ electroproduction data from CLAS

The measurements with an unpolarized e⁻ beam onto a proton target offer nine differential cross sections in each (W, Q^2) bin.

Number data points > 17500 1.3 < W < 2.1 GeV; $0.25 < Q^2 < 1.5 \text{ GeV}^2$ prelim. 2.0 < Q² < 5.0 GeV²

M. Ripani *et al.*, PRL,91, 022002 (2003);
G. Fedotov *et al.*, PRC 79, 015204 (2009).

ellerson H

ellerson (

Isobar channels included:

- All well established N*s with $\pi\Delta$ decays and 3/2+(1720) candidate, seen in CLAS N $\pi\pi$ data.
- Reggeized Born terms with effective FSI
 & ISI treatment .
- Extra $\pi\Delta$ contact term.

ρ**p**

•All well established N*s with ρp decays and 3/2+(1725) candidate.

•Diffractive ansatz for non-resonant part and ρ -line shrinkage in N* region.

continued

Full model description with all expressions for contributing amplitudes can be found in:

- V. Mokeev, V.Burkert, T-S.H.Lee et al., Phys. Rev. C80, 045212 (2009).
- https://www.jlab.org/~mokeev/jm/mokeev_pipip.pdf.

ellerson (

Regular BW ansatz for resonant amplitudes

_contain only phases described in the slides #11,12

$$\left\langle \lambda_{f}\left|T_{r}\right|\lambda_{\gamma}\lambda_{p}\right\rangle =\sum_{N^{*}}\frac{\left\langle \lambda_{f}\left|T_{dec}\right|\lambda_{R}\right\rangle \left\langle \lambda_{R}\left|T_{em}\right|\lambda_{\gamma}\lambda_{p}\right\rangle }{M_{r}^{2}-W^{2}-i\Gamma_{r}(W)M_{r}}$$

where M_r , Γ_r are resonance mass and energy-dependent

Hadronic parameters:

The $\langle \lambda_f | T_{dec} | \lambda_R \rangle$ hadr. dec. amplitudes were estimated from $\Gamma_{f,LS}(W)$ partial hadronic decay widths, that were transformed to $\Gamma_{\lambda_f}(W)$:

$$\begin{split} \langle \lambda_f | T | \lambda_R \rangle &= \langle \lambda_f | T_{dec}^{J_r} | \lambda_R \rangle d_{\mu\nu}^{J_r} (\cos \theta^*) e^{i\mu \phi^*}, \\ \mu &= \lambda_R, \\ \nu &= -\lambda_\Delta \ for \ \pi\Delta \\ \nu &= \lambda_{p'} - \lambda_\rho \ for \ \rho p, \end{split}$$

where J^r is N^* spin; θ^* , ϕ^* spherical angles for stable fin. particle emission in the N^* rest frame

$$\textbf{real} \quad \langle \lambda_f | T_{dec^0}^{J_r} | \lambda_R \rangle = \frac{2\sqrt{2\pi}\sqrt{2J_r + 1}M_{N^*}\sqrt{\Gamma_{\lambda_f}}}{\sqrt{\langle P_i^0 \rangle}},$$

where index 0 stands for the amplitudes or variables eval-

total width and $\langle \lambda_R | T_{em} | \lambda_\gamma \lambda_p \rangle$, $\langle \pi \lambda_f | T_{dec} | \lambda_R \rangle$ are electromagnetic production and strong decay amplitudes of N^* with helicity λ_R , respectively. Indices λ_f stand for the final states populated in N^* decays in helicity representation.

uated at the resonant point $W = M_{res}$. $\langle P_i^0 \rangle$ is absolute value of 3 momentum of the final stable particle, averaged over running mass of the final unstable hadron.

W- evolution of decay amplitude:

$$\langle f: (ls) | T_{dec} | \lambda_R \rangle (W) = \langle f: (ls) | T_{dec0} | \lambda_R \rangle$$

$$\left[\frac{M_{res}}{W} \frac{J_l^2(p^0 R) + N_l^2(p^0 R)}{J_l^2(pR) + N_l^2(pR)} \right]^{1/2} \sqrt{\frac{\langle p^0 \rangle}{\langle p \rangle}}$$

where J_l , N_l are Bessel's and Neumann's functions, R=1f

 $\langle p^0 \rangle$ and $\langle p \rangle$ are averaged momenta of the stable particle calculated at the resonant $W_{res} = M_{res} (\langle p^0 \rangle)$ and at the current W, respectively.

Cont'd

Electrocouplings:

The $A_{1/2}$, $A_{3/2}$ were defined as:

$$\Gamma_{\gamma} = \frac{q_{\gamma,0}^2}{\pi} \frac{2M_N}{(2J_{res} + 1)M_{N^*}} \left\{ A_{1/2}^2 + A_{3/2}^2 \right\},$$

where $q_{\gamma,0}$ is photon 3-momentum abs. value at $W=M_N$.

The relations between electrocouplings $A_{1/2}$, $A_{3/2}$, $S_{1/2}$ and $\langle \lambda_R | T_{em} | \lambda_\gamma \lambda_p \rangle$ amplitudes were determined from requirement to reproduce BW cross section for single N^* state:

$$\sigma(W) = \frac{\pi}{q_{\gamma}^2} (2J_r + 1) \frac{M_N^2 \Gamma_i(W) \Gamma_{\gamma}}{(M_{N*}^2 - W^2)^2 - M_{N*}^2 \Gamma_{tot}^2(W)},$$

N* electromagnetic production amplitudes and electrocouplings:

$$\begin{array}{l} \mbox{real} \quad \langle \lambda_R \left| T_{em} \right| \lambda_\gamma \lambda_p \rangle = \frac{W}{M_r} \sqrt{\frac{8M_N M_r q_{\gamma_0}^*}{4\pi\alpha}} \sqrt{\frac{q_{\gamma_0}^*}{q_\gamma^*}} A_{1/2,3/2}(Q^2); \\ \quad |\lambda_\gamma - \lambda_p| = \frac{1}{2}, \frac{3}{2} \\ \quad \mbox{-for transverse photons} \\ \mbox{real} \quad \langle \lambda_R \left| T_{em} \right| \lambda_\gamma \lambda_p \rangle = \frac{W}{M_r} \sqrt{\frac{8M_N M_r q_{\gamma_0}^*}{4\pi\alpha}} \sqrt{\frac{q_{\gamma_0}^*}{q_\gamma^*}} \sqrt{2S_{1/2}(Q^2)} \\ \quad \mbox{-for longitudinal photons} \end{array}$$

Unitarized BW anstaz

We apply unitarization procedure proposed in I.J.R.Aitchison NP A189 (1972), 417:

$$T_{\gamma p \to MB} = f_{\beta MB} S_{\alpha \beta} f_{\alpha \gamma p}$$

where $f_{\alpha\gamma\rho}$, $f_{\beta MB}$ are the α -th N* electroproduction and β -th N* hadronic decay amplitude to the meson-baryon (MB) final state; $S_{\alpha\beta}$ is the operator for resonance propagation, taking into account all transitions between α and β N* states, allowed by conservation laws in the strong interactions. No extra phases were used.

Off-diagonal transitions incorporated into JM:

Non-resonant contributions to $\pi\Delta$ **channels**

Minimal set of current conserving Born terms

current conservation.

ellerson

$$g_{\pi}(Q^{2},t) = g_{c}(Q^{2},t)$$
$$g_{\Delta}(Q^{2},t) = \frac{g_{\pi}(Q^{2},t) + g_{N}(Q^{2})}{2}$$

Analytical expression for amplitudes

$$t^{\epsilon}_{\lambda_{\Delta}\lambda_{\gamma}\lambda_{p}} = g_{\epsilon}(Q^{2},t)\overline{u}_{\mu}(p_{2},\lambda_{\Delta})u(p_{1},\lambda_{p})\epsilon_{\mu}(q,\lambda_{\gamma})$$

$$\begin{split} t^{pif}_{\lambda_{\Delta}\lambda_{\gamma}\lambda_{p}} = g_{\pi}(Q^{2},t) \frac{(2p_{\pi}^{\mu}-q^{\mu})\epsilon_{\mu}(q,\lambda_{\gamma})}{t-m_{\pi}^{2}} \cdot \\ \overline{u}_{\nu}(p_{2},\lambda_{\Delta})u(p_{1},\lambda_{p})(q^{\nu}-p_{\pi}^{\nu}) \end{split}$$

$$t_{\lambda_{\Delta} \lambda_{\gamma} \lambda_{p}}^{N} = g_{N}(Q^{2})g_{0}\frac{(2p_{1}^{\mu} + q^{\mu})\varepsilon_{\mu}(q, \lambda_{\gamma})}{s - m_{N}^{2}} \cdot \frac{1}{\overline{u}_{\nu}(p_{2}, \lambda_{\Delta})u(p_{1}, \lambda_{p})p_{\pi}^{\nu}}$$

$$\begin{split} t^{\Delta}_{\lambda_{\Delta}\lambda_{\gamma}\lambda_{p}} &= 2g_{\Delta}(Q^{2},t)\frac{(2p_{2}^{\mu}-q^{\mu})\varepsilon_{\mu}(q,\lambda_{\gamma})}{u-m_{\Delta}^{2}} \cdot \\ &\overline{u}_{\nu}(p_{2},\lambda_{\Delta})p_{\pi}^{\nu}u(p_{1},\lambda_{p}), \end{split}$$

<u>con'd</u>

Vertex functions.

$$g_{\pi}(Q^2, t) = G_{\pi, em}(Q^2)G_{\pi N\Delta}(t)$$

$$G_{\pi,em}(Q^2) = \frac{1}{\left(1 + \frac{Q^2(GeV^2)}{\Lambda_{\pi}^2}\right)} \frac{1}{G_{\pi N\Delta}(t_{min})}$$

 $\Lambda_{\pi}^2 = 0.462$ C.J. Bebek et al., Phys. Rev. **D17**, 1693 (1978).

$$G_{\pi N\Delta}(t) = g_0 \frac{\Lambda^2 - m_\pi^2}{\Lambda^2 - t}$$

The interaction constant g_0 and cut-off parameter A are: $g_0 = 2.1/m_{\pi}$ and A = 0.75 GeV. R. Machleidt, in Advances in Nuclear Physics 19, (1979).

Regge trajectory implementation.

$$\frac{1}{t-m_{\pi}^{2}} \to R_{\pi}(t) = \left(\frac{S}{S_{0}}\right)^{\alpha_{\pi}(t)}$$
$$\frac{\pi \alpha_{\pi}^{'}}{\sin(\pi \alpha_{\pi}(t))} \cdot \frac{1+e^{-i\pi\alpha_{\pi}(t)}}{2} \cdot \frac{1}{\Gamma(1+\alpha_{\pi}(t))}$$

proposed in M.Vanderhaeghen, M.Guidal and J.M.Laget, Phys. Rev. C57, 1454 (1998). multiplicative factor:

$$\alpha_R(t-m_\pi^2)R_\pi(t)$$

Absorptive ansatz for phenomenological treatment of ISI & FSI in $\pi\Delta$ channels

K.Gottfried, J.D.Jackson, Nuovo Cimento 34 (1964) 736. M.Ripani et al., Nucl Phys. A672, 220 (2000).

Applied to non resonant parts of $\pi\Delta$ amplitudes decomposed over PW's of total angular momenta J.

$$\begin{split} f_{\lambda\mu}^{jcorr} &= f_{ISI}^{j} f_{\lambda\mu}^{j} f_{FSI}^{j} \\ \lambda &= \lambda_{\gamma} - \lambda_{p}, \mu = -\lambda_{\Delta} \end{split}$$

2

Absorptive factors are related to S-matrix elements of ρp

Re-normalization of $\pi\Delta \ \rho p$ amplitudes

Consider ISI & FSI limit, that incorporates just single N^* with only one open elastic channel. Abs. values of $\gamma_v p \to \pi \Delta$ amplitudes should remain unchanged at the resonant point \to Resonant $\pi \Delta$, ρp elastic amplitudes at resonant point should be equal to $i \to S = -1$.

Determined in this way normalization factor:

$$N_{isifsi} = \frac{P_{\pi(\rho)}}{8\pi(2j+1)W} \tag{1}$$

 P_{π} , P_{ρ} are three – momenta moduli of pion and ρ .

The normalization factor N_{isifsi} of (Eq.1) was applied to full $\pi\Delta$, ρp elastic amplitudes in the PW of total angular momentum j.

and $\pi\Delta$ elastic scattering amplitudes, respectively:

$$f_{ISI}^{j} = \langle \lambda_{\rho} \lambda_{p} | S^{j} | \lambda_{\rho} \lambda_{p} \rangle^{1/2}$$

$$f_{FSI}^{j} = \langle \pi \lambda_{\Delta} | S^{j} | \lambda_{\Delta} \pi \rangle^{1/2}$$

S = 1 + 2iT

V.I.Mokeev EBAC Meeting May 26 2010

Cont'd

 $\pi\Delta$, ρp elastic scattering amplitudes

Extra contact terms in $\pi\Delta$ isobar channels

$$t^{c} = \{A(W, Q^{2}) \varepsilon_{\mu}^{\gamma} \overline{U}_{\Delta}^{\nu} \gamma^{\mu} U p_{\nu}^{\pi} + B(W, Q^{2}) \varepsilon_{\nu}^{\gamma} \overline{U}_{\Delta}^{\nu} \gamma^{\delta} U (2 p_{\nu}^{\pi} - q_{\gamma})_{\delta} \}^{*}$$
$$\frac{1}{t - \Lambda^{2}} \qquad \Lambda^{2} = 1.64 \quad GeV^{2}$$

Parameters A(W,Q²), B(W,Q²) were taken from the CLAS data fit.

ellerson Val

Diffractive ansatz from J. D. Bjorken, PRD3, 1382 (1971).

$$T_{diff} = iAe^{bt}$$
Good approximation for t<1.0 GeV²;
 $t = (P_{p'} - P_{\gamma'})^{2}$
dominated by N^{*}

b=b(L_{fluct}) from D.G.Cassel et al, PRD24, 2878 (1981).

JM model improvement $A=A(W,Q^2)$, essential in N* area at W<1.8 GeV:

$$A(W,Q^{2}) = A(Q^{2})(1 - e^{(-(W-1.41)/D)})$$
$$A(Q^{2}) = \frac{A_{0}}{(1 + Q^{2}/\Lambda^{2}(W))}$$
$$\Lambda(W) = \Lambda_{0}(1 - e^{(-(W-1.41)/D_{\lambda})})$$

All details in: N.V.Shvedunov et al, Phys of Atom. Nucl. 70, 427 (2007).

$\pi^+ D_{13}(1520)$ isobar channel

Evidence for $\pi^+D_{13}(1520)$ isobar channel in the CLAS $\pi^+\pi^-p$ data

- full JM results with π⁺D₁₃(1520) implemented
- full JM results without π⁺D₁₃(1520) and adjusted direct 2π production
 - $\pi^+D_{13}(1520)$ contribution

Born terms similar to employed in $\pi\Delta$ channels with additional γ_5 matrix

$\pi^+F_{15}(1685), \pi^-P_{33}^{++}(1620)$ isobar channels

V.I.Mokeev EBAC Meeting May 26 2010

lefferson Va

Manifestation of direct 2π production in angular distributions

Need for improvements in description of direct 2π production

Final parametrization of direct 2π production amplitudes

 $A(W, Q^{2})\varepsilon_{\mu}(q_{\gamma})\overline{U}_{p'}(P_{p'})\gamma^{\mu}U_{p}(P_{p})*$ $e^{b(t_{1}-t_{1\max})}(P_{2}P_{3})\{\alpha_{1}(W)e^{b(t_{2}-t_{2\max})} +$ $\alpha_{2}(W)e^{b(t_{3}-t_{3\max})}\}$ $t_{1} = (q_{\gamma} - P_{1})^{2}$ $t_{2} = (P_{p} - P_{3})^{2}$ $t_{3} = (P_{p} - P_{2})^{2}$

$$A(W, Q^{2}) \varepsilon_{\mu}(q_{\gamma}) \overline{U}_{p'}(P_{p'}) \gamma^{\mu} U_{p}(P_{p})^{*}$$

$$e^{b(t_{1}-t_{1max})}(P_{1}P_{2}) \{\alpha_{1}(W)e^{b(t_{2}-t_{2max})}(t_{2}-t_{2max}) + \alpha_{2}(W)e^{b(t_{3}-t_{3max})}\}$$

$$t_{1} = (p_{p}-P_{3})^{2}$$

$$t_{2} = (q_{\gamma}-P_{1})^{2}$$

$$t_{3} = (q_{\gamma}-P_{2})^{2}$$

$$(12-t_{2max}) + \alpha_{2}(W)e^{b(t_{3}-t_{3max})}$$

The CLAS data on $\pi^+\pi^-p$ differential cross sections and the description within the JM model

V.I.Mokeev EBAC Meeting May 26 2010

Extraction of resonance parameters and non-resonant contributions from the CLAS $\pi^+\pi^-p$ data

Fitting Procedures

Simultaneous variation of the following resonant/non-resonant JM model parameters according to the normal distribution:

 $-\gamma_v$ NN* electrocouplings with σ -parameter equal to 30% from their initial values, taken from interpolation of the CLAS/world data;

- $\pi\Delta$ and ρ p hadronic decays decomposed over LS p.w for part of N*'s with σ -parameters, that cause total N* width float from 40 to 600 MeV

-magnitudes of complementary contact terms in $\pi\Delta$ isobar channels; magnitudes of the $\pi^+D_{13}^0(1520)$, $\pi^+F_{15}^0(1685)$, $\pi^-P_{33}^+(1620)$ isobar channel amplitudes; magnitudes of direct 2π production mechanisms; the respective σ parameters were chosen 10 -30 % from the starting magnitude values

- $\begin{tabular}{ll} χ^2 / d.p. fit of nine 1-fold diff. cross sections in each bin of W and Q^2 were carried out . Closest to the data calculated section were selected with \end{tabular}$
- □ χ^2 /d.p. < χ^2 /d.p._{thr}. The χ^2 /d.p._{thr}. were defined so that selected in the fit calc. cross sections are inside the uncertainties of measured cross sections for a major part of the data points.

$W = 1.51 \text{ GeV } Q^2 = 0.43 \text{ GeV}^2$

band of differential cross sections calculated in JM model that are closest to experimental N $\pi\pi$ data, being determined under requirement : $\chi^2/d.p. < \chi^2/d.p.$ _max

ellerson C

differential cross sections for contributing isobar channels:

 $\begin{array}{ll} may \text{ be used in} \\ \pi^{-}\Delta^{++} & \text{development of reaction} \\ \pi^{+}\Delta^{0} & \text{models} \end{array}$

Non-resonant amplitudes contributing to $\pi^-\Delta^{++}$ isobar channel from the CLAS data fit

V.I.Mokeev EBAC Meeting May 26 2010

Resonant & non-resonant parts of $N\pi\pi$ cross sections as determined from the CLAS data fit within the framework of JM model

How N* electrocouplings are accessed in JM model

- Isolate the resonant part of production amplitudes by fitting the measured observables.
- N* electrocouplings are determined from resonant amplitudes, parameterized within the framework of unitarized BW ansatz.

Consistent results on N* electrocouplings obtained in analyses of various meson channels (e.g. πN , ηp , $\pi \pi N$) with entirely different non-resonant amplitudes will show that they are determined reliably.

Input from advanced multi channel analyses accounting for FSI and rigorously employing Untiratity is required!

Why $N\pi/N\pi\pi$ electroproduction channels are important

- Nπ/Nππ channels are the two major contributors in N* excitation region;
- these two channels combined are sensitive to almost all excited proton states;
- they are strongly coupled by πN→ππN final state interaction;
- may substantially affect exclusive channels having smaller cross sections, such as ηp,KΛ, and KΣ.

Consistent results from independent analyses of individual exclusive channels and global multi channel analysis offer an ultimate test for reliability of extracted N* parameters

Comparison between $P_{11}(1440)$ electrocouplings obtained from the CLAS data on $N\pi/N\pi\pi$ electroproduction

Good <u>agreement</u> between the electrocouplings obtained from the <u> $N\pi$ and</u> <u> $N\pi\pi$ channels</u>: Reliable measure of the electrocouplings with N* pasrtameters defined within the framework of BW ansatz

Open question: how to compare these electrocouplings with obtained in cc approaches? EBAC-DCC results showed substantial Im parts

High lying resonance electrocouplings & the impact of BW ansatz unitarization

N* hadronic parameters derived from the CLAS $\pi^+\pi^-p$ data

fit

P ₁₃ (1720)						
	$\Gamma_{\rm tot}$, MeV	$\Gamma_{\pi\Delta}$, MeV	$\Gamma_{\rho\rho}$, MeV	M,GeV		
Regular BW ansatz	135±12	1.53±1.05	114±12	1.743±0.006		
Unitarized BW anstaz	113±3.4	10.9±1.40	82.9±3.26	1.744±0.007		

3/2+(1720) candidate state

	Γ_{tot} , MeV	$\Gamma_{\pi\Delta}$, MeV	Γ _{ρp} , MeV	M,GeV
Regular BW ansatz	86±5	44±5.5	6.25±1.62	1.727±0.003
Unitarized BW anstaz after improvements	107±12	61±12	0.63±0.21	1.725±0.006

Unitarization of BW ansatz affects substantially N* hadronic decay parameters, while the impact on $\gamma_v NN^*$ electrocouplings is almost negligible

JM amplitudes and cross sections

S-matrix, inv. flux F and single particle phase space element in JM model.

 $S = I + (2\pi)^4 \delta^4 (P_f - P_i) iT,$

where P_f and P_i are total four momenta of the final and the initial particles respectively. The Dirac spinors were normalized as:

Invariant flux:

ellerson

$$\overline{U_p}U_p = 2M_N$$

where U_p , $(\overline{U_p})$ are Dirac (conjugated Dirac) spinors, M_N is the nucleon mass.

The phase space element for the final particle i with three-momentum vector $\vec{p_i}$ and energy $\vec{E_i}$:

 $d^3\vec{p_i}/(2E_i(2\pi)^3)$

$F = q_{\gamma} P_N$,

where q_{γ} and P_N are four momenta of the initial photon and proton.

Phase space element $d^5\Phi$ for the final $\pi^+\pi^-p$ state:

$$\begin{split} d^{5}\phi &= \frac{1}{32W^{2}(2\pi)^{5}}ds_{\pi^{+}\pi^{-}}ds_{\pi^{+}p}d\theta_{\pi^{-}}d\alpha_{[p'\pi^{+}][p\pi^{-}]}d\varphi_{\pi^{-}},\\ ds_{\pi^{+}\pi^{-}} &= dM_{\pi^{+}\pi^{-}}^{2},\\ ds_{\pi^{+}p} &= dM_{\pi^{+}p}^{2}, \end{split}$$

where θ_{π^-} , φ_{π^-} are the final π^- spherical angles with respect to the direction of virtual photon, and $\alpha_{[p'\pi^+]p\pi^-]}$ is the angle between the plane B defined by the momenta of the final $p'\pi^+$ pair and the plane A defined by the initial proton and the final π^-

Con'd

integration over $\phi_{\pi^{-}}$.

4 –fold differential $\pi^+\pi^-p$ cross section after integration over ϕ_{π^-} :

$$d^4\sigma = \frac{4\pi\alpha}{4K_L M_N} \left\{ \frac{J_x^* J_x + J_y^* J_y}{2} + \epsilon_L J_z^* J_z \right\} d^4\phi,$$

where $\alpha = \frac{1}{137}$, ϵ_L stands for degree of longitudinal polarization of virtual photons. The K_L is the equivalent photon energy:

$$K_L = \frac{W^2 - M_N^2}{2M_N},$$

The hadronic current J_{ν} and the virtual photon vectors $\epsilon(\lambda_{\gamma})$ (λ_{γ} =-1,0,+1) are related to reaction helicity amplitudes $\langle \lambda_f | T | \lambda_p \lambda_{\gamma} \rangle$ as:

where λ_i (i= γ, p) stand for the initial state photon and proton helicities. The λ_f is generic symbol for the helicities in the final state

 $d^4\phi$ stands for the 3-body phase space differential after

$$\begin{split} \epsilon_{\nu}(\lambda_{\gamma} &= -1)J^{\nu}(\lambda_{p},\lambda_{f}) = \langle \lambda_{f}|T|\lambda_{p}\lambda_{\gamma} = -1\rangle, \\ \epsilon_{\nu}(\lambda_{\gamma} &= 1)J^{\nu}(\lambda_{p},\lambda_{f}) = \langle \lambda_{f}|T|\lambda_{p}\lambda_{\gamma} = 1\rangle, \\ \epsilon_{\nu}(\lambda_{\gamma} &= 0)J^{\nu}(\lambda_{p},\lambda_{f}) = \langle \lambda_{f}|T|\lambda_{p}\lambda_{\gamma} = 0\rangle, \end{split}$$

The expressions on the slides #10,11 allow us to relate $\pi^+\pi^-p$ electroproduction amplitudes of JM model and any other approach.

$D_{13}(1520)$ electrocouplings from the CLAS data on $N\pi/N\pi\pi$ electroproduction

- electrocouplings as determined from the Nπ & Nππ channels are in good agreement overall
- but the apparent discrepancies for the A_{1/2} amplitude at Q² ~ 0.4 GeV² will be further investigated in a combined Nπ/Nππ analysis
- hypercentric Consituent Quark Model calculations reasonably describe electrocouplings at Q²>2.5 GeV², suggesting that the 3-quark component is the primary contribution to the structure of this state at high Q².

$N\pi$ CLAS data at low & high Q²

Number of data points > 119,000, W < 1.7 GeV

EBAC Meeting May 20 2010

Observable	Q^2 [GeV²]	Number of Data points
$d\sigma/d\Omega(\pi^0)$	0.35-1.6	31 018
$d\sigma/d\Omega(\pi^+)$	0.25-0.65 1.7-4.3	13 264 33 000
$A_e(\pi^0)$	0.40 0.65	956 805
$A_e(\pi^+)$	0.40 0.65 1.7 - 4.3	918 812 3 300
$d\sigma/d\Omega(\eta)$	0.375 0.750	172 412

VILIVIOKEEV

00020

Low Q² results:

I. Aznauryan *et al.*, PRC 71, 015201 (2005); PRC 72, 045201 (2005);

High Q² results on Roper: I. Aznauryan *et al.*, PRC 78, 045209 (2008).

Prelim. high Q² results on D₁₃(1520), S₁₁(1535): V.Burkert, AIP Conf.Proc. 1056, 248 (2008).

Summary paper: I.G.Aznauryan, V.D.Burkert et al. (CLAS Collaboration) arXiv:0909.2349[nucl-ex]

full data set in: http://clasweb.jlab.org/physicsdb/

Definition of Resonance Parameters in JM model (including relative phases between resonant/non-resonant amplitues)

Application to the $\pi^+\pi^-$ **p CLAS data analysis**

- 1.66<W<1.76 GeV, 0.5<Q²<1.5 GeV²; transitions between only two N* states are allowed by conservation laws 3/2+(1720) ↔ P₁₃(1720). Unitarized BW ansatz was applied to this pair of states, while the other resonant contributions were treated in regular BW ansatz
- Resonant parts of $\gamma p \rightarrow MB$ amplitudes, derived from the expression (1),(2) is :

$$T_{\gamma \to MB} = \frac{1}{\det[S^{-1}]} \{ f_{1MB} (M_2^2 - i\Gamma_{2t}M_2 - W^2) f_{1\gamma p} + i\sqrt{M_1M_2} \sum_{i} \sqrt{\Gamma_{1i}\Gamma_{2i}} f_{2MB} f_{1\gamma p} + i\sqrt{M_1M_2} \sum_{i} \sqrt{\Gamma_{1i}\Gamma_{2i}} f_{1MB} f_{2\gamma p} + f_{2MB} (M_1^2 - i\Gamma_{1t}M_1 - W^2) f_{2\gamma p} \}$$
(3)

while the denominator det[S⁻¹] for two interacting resonances is:

$$\det[S^{-1}] = (M_1^2 - i\Gamma_{1t}M_1 - W^2)(M_2^2 - i\Gamma_{2t}M_2 - W^2) + (\sum_i \sqrt{\Gamma_{1i}\Gamma_{2i}})^2 M_1 M_2 \quad (4)$$

where $\Gamma \alpha t$ are full decay widths of interacting N* states mentioned above.

Quality of the CLAS $\pi^+\pi^-p$ data description

	Range of χ^2 /d.p. for selected in the data fit calculated cross secions			
Regular BW ansatz	2.74-2.98			
Unitarized BW ansatz before improvements	2.85-3.21			
Unitarized BW ansatz after improvements	2.83-3.04			
Comparable quality of the CLAS $\pi^+\pi^-p$ data description was achieved within the framework of JM model ,utilizing both unitarized and regular BW ansatzs .				

How to compare N* parameters from JM and the approaches, employing analytical continuation of production amplitudes in complex energy plain?

N* parameters from JM model for comparison:

•fully integrated resonant cross sections for any given resonance at $W=M_{res}$ in the channels: $\gamma p \rightarrow \pi^- \Delta^{++}$ $\pi + \Delta^0$ ρp at the central or maximal (sub-threshold regime) mass of the unstable

at the central or maximal (sub-threshold regime) mass of the unstable hadron

•resonant amplitudes for these processes. Phase difference between resonant amplitudes from JM and cc approaches may be incorporated as extra phases in JM resonant ansatz and data fit with "improved " ansatz can be repeated

